Issue
ESAIM: M2AN
Volume 49, Number 6, November-December 2015
Special Issue - Optimal Transport
Page(s) 1621 - 1642
DOI https://doi.org/10.1051/m2an/2015033
Published online 05 November 2015
  1. M. Agueh and G. Carlier, Barycenters in the wasserstein space. SIAM J. Math. Anal. 43 (2011) 904–924. [CrossRef] [MathSciNet] [Google Scholar]
  2. J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge−Kantorovich mass transfer problem. Numer. Math. 84 (2000) 375–393. [CrossRef] [MathSciNet] [Google Scholar]
  3. J.-D. Benamou, B.D. Froese and A.M. Oberman, Numerical solution of the optimal transportation problem using the Monge–Ampère equation. J. Comput. Phys. 260 (2014) 107–126. [CrossRef] [MathSciNet] [Google Scholar]
  4. J. Bigot and T. Klein, Consistent estimation of a population barycenter in the wasserstein space. Preprint arXiv:1212.2562 (2012). [Google Scholar]
  5. Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44 (1991) 375–417. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  6. J.V. Burke, A.S. Lewis and M.L. Overton, A robust gradient sampling algorithm for nonsmooth, nonconvex optimization. SIAM J. Optim. 15 (2005) 751–779. [CrossRef] [MathSciNet] [Google Scholar]
  7. G. Carlier and I. Ekeland, Matching for teams. Economic Theory 42 (2010) 397–418. [CrossRef] [Google Scholar]
  8. M. Cuturi and A. Doucet, Fast computation of Wasserstein barycenters. Proc. of the 31st International Conference on Machine Learning – ICML-14 (2014) 685–693. [Google Scholar]
  9. B. Galerne, Y. Gousseau and J.-M. Morel, Random phase textures: theory and synthesis. IEEE Trans. Image Process. 20 (2011) 257–267. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  10. W. Gangbo and A. Swiech, Optimal maps for the multidimensional Monge-Kantorovich problem. Commun. Pure Appl. Math. 51 (1998) 23–45. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  11. N. Ghoussoub and B. Maurey, Remarks on multi-marginals symmetric Monge-Kantorovich problems. Discrete Cont. Dyn. Syst. 34 (2014) 1465–1480. [Google Scholar]
  12. N. Ghoussoub and A. Moameni, A self-dual polar factorization for vector fields. Commun. Pure Appl. Math. 66 (2013) 905–933. [CrossRef] [MathSciNet] [Google Scholar]
  13. M. Grant and S. Boyd, Graph implementations for nonsmooth convex programs. In Recent Advances in Learning and Control. Edited by V. Blondel, S. Boyd and H. Kimura. Lect. Notes Control Inform. Sci. Springer-Verlag Limited (2008) 95–110. Available on http://stanford.edu/˜boyd/graph˙dcp.html. [Google Scholar]
  14. M. Grant and S. Boyd, CVX: Matlab software for disciplined convex programming. Version 1.21. Available on http://cvxr.com/cvx (2010). [Google Scholar]
  15. N. Haarala, K. Miettinen and M.M. Mäkelä, Globally convergent limited memory bundle method for large-scale nonsmooth optimization. Math. Program. 109 (2007) 181–205. [CrossRef] [MathSciNet] [Google Scholar]
  16. J.B. Hiriart-Urruty and C. Lemaréchal, Vol. 1 of Convex analysis and minimization algorithms. Springer (1996). [Google Scholar]
  17. C. Lemaréchal, R. Mifflin, Nonsmooth optimization. In Proc. of IIASA: International Institute for Applied Systems Analysis. Pergamon Press (1978). [Google Scholar]
  18. A.S. Lewis and M.L. Overton, Behavior of BFGS with an exact line search on nonsmooth examples. Technical report. Optimization Online (2008b). http://www.optimization-online.org/DB˙FILE/2008/12/2173.pdf. SIAM J. Optim. (Submitted). [Google Scholar]
  19. A.S. Lewis and M.L. Overton, Nonsmooth optimization via BFGS. SIAM J. Optim. (Submitted). [Google Scholar]
  20. R.J. McCann, A convexity principle for interacting gases. Adv. Math. 128 (1997) 153–179. [CrossRef] [MathSciNet] [Google Scholar]
  21. Q. Mérigot and É. Oudet, Discrete optimal transport: complexity, geometry and applications. Preprint (2012). [Google Scholar]
  22. N. Papadakis, G. Peyré and E. Oudet, Optimal transport with proximal splitting. SIAM J. Imag. Sci. 7 (2014) 212–238. [CrossRef] [MathSciNet] [Google Scholar]
  23. B. Pass, Multi-marginal optimal transport and multi-agent matching problems: uniqueness and structure of solutions. Discrete Contin. Dyn. Syst. 34 (2014) 1623–1639. [CrossRef] [MathSciNet] [Google Scholar]
  24. B. Pass, On the local structure of optimal measures in the multi-marginal optimal transportation problem. Calc. Var. Partial Differ. Equ. 43 (2012) 529–536. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  25. M.J.D. Powell, Some global convergence properties of a variable metric algorithm for minimization without exact line searches. Nonlin. Progr. 9 (1976) 53–72. [Google Scholar]
  26. J. Rabin, G. Peyré, J. Delon and M. Bernot, Wasserstein barycenter and its application to texture mixing. In Scale Space and Variational Methods in Computer Vision. Springer. (2012) 435–446. [Google Scholar]
  27. A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency. Vol. 24. Springer (2003). [Google Scholar]
  28. C. Villani, Topics in Optimal Transportation. Vol. 58. AMS Bookstore (2003). [Google Scholar]
  29. C. Villani, Optimal Transport: Old and New. Vol. 338. Springer (2009). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you