Volume 49, Number 6, November-December 2015
Special Issue - Optimal Transport
Page(s) 1643 - 1657
Published online 05 November 2015
  1. M. Beiglböck, Ch. Léonard and W. Schachermayer, A general duality theorem for the monge–kantorovich transport problem. Stud. Math. 209 (2012) 2. [Google Scholar]
  2. A. Braides, Gamma-convergence for Beginners. Vol. 22. Oxford University Press, Oxford (2002). [Google Scholar]
  3. G. Buttazzo, L. De Pascale and P. Gori-Giorgi, Optimal-transport formulation of electronic density-functional theory. Phys. Rev. A 85 (2012) 062502. [Google Scholar]
  4. G. Carlier, On a class of multidimensional optimal transportation problems. J. Convex Anal. 10 (2003) 517–530. [MathSciNet] [Google Scholar]
  5. G. Carlier and B. Nazaret, Optimal transportation for the determinant. ESAIM: COCV 14 (2008) 678–698. [CrossRef] [EDP Sciences] [Google Scholar]
  6. M. Colombo, L. De Pascale and S. Di Marino, Multimarginal optimal transport maps for 1-dimensional repulsive costs. Canad. J. Math. (2013). [Google Scholar]
  7. M. Colombo and S. Di Marino, Equality between monge and kantorovich multimarginal problems with coulomb cost. Ann. Mat. Pura Appl. (2013) 1–14. [Google Scholar]
  8. C. Cotar, G. Friesecke and C. Klüppelberg, Density functional theory and optimal transportation with coulomb cost. Commun. Pure Appl. Math. 66 (2013) 548–599. [Google Scholar]
  9. G. Dal Maso, An introduction to Γ-convergence. Springer (1993). [Google Scholar]
  10. G. Friesecke, Ch.B. Mendl, B. Pass, C. Cotar and C. Klüppelberg, N-density representability and the optimal transport limit of the hohenberg−kohn functional. J. Chem. Phys. 139 (2013) 164–109. [Google Scholar]
  11. W. Gangbo and A. Swiech, Optimal maps for the multidimensional monge−kantorovich problem. Comm. Pure Appl. Math. 51 (1998) 23–45. [Google Scholar]
  12. N. Ghoussoub and A. Moameni, A self-dual polar factorization for vector fields. Comm. Pure Appl. Math. 66 (2013) 905–933. [Google Scholar]
  13. P. Gori-Giorgi and M. Seidl, Density functional theory for strongly-interacting electrons: perspectives for physics and chemistry. Phys. Chem. Chem. Phys. 12 (2010) 14405–14419. [CrossRef] [PubMed] [Google Scholar]
  14. P. Gori-Giorgi, M. Seidl and G. Vignale, Density-functional theory for strongly interacting electrons. Phys. Rev. Lett. 103 (2009) 166402. [CrossRef] [PubMed] [Google Scholar]
  15. H. Heinich, Problème de monge pour n probabilités. C. R. Math. 334 (2002) 793–795. [Google Scholar]
  16. P. Hohenberg and W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136 (1964) B864. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  17. H.G. Kellerer, Duality theorems for marginal problems. Probab. Theory Relat. Fields 67 (1984) 399–432. [Google Scholar]
  18. Walter Kohn and Lu Jeu Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140 (1965) A1133. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  19. E.H. Lieb. Density functionals for coulomb systems. Int J. Quantum Chem. 24 (1983) 243–277. [Google Scholar]
  20. Ch.B. Mendl and L. Lin, Kantorovich dual solution for strictly correlated electrons in atoms and molecules. Phys. Rev. B 87 (2013) 125106. [CrossRef] [Google Scholar]
  21. B. Pass, Uniqueness and monge solutions in the multimarginal optimal transportation problem. SIAM J. Math. Anal. 43 (2011) 2758–2775. [CrossRef] [MathSciNet] [Google Scholar]
  22. B. Pass, On the local structure of optimal measures in the multi-marginal optimal transportation problem. Calc. Var. Partial Differ. Equ. 43 (2012) 529–536. [Google Scholar]
  23. S.T. Rachev and L. Rüschendorf, Mass transportation problems. Probab. Appl. Springer-Verlag (1998), Vol. I. [Google Scholar]
  24. M. Seidl, Strong-interaction limit of density-functional theory. Phys. Rev. A 60 (1999) 4387. [Google Scholar]
  25. M. Seidl, P. Gori-Giorgi and A. Savin, Strictly correlated electrons in density-functional theory: A general formulation with applications to spherical densities. Phys. Rev. A 75 (2007) 042511. [Google Scholar]
  26. M. Seidl, J.P. Perdew and M. Levy, Strictly correlated electrons in density-functional theory. Phys. Rev. A 59 (1999) 51. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you