Volume 49, Number 6, November-December 2015
Special Issue - Optimal Transport
Page(s) 1659 - 1670
Published online 05 November 2015
  1. F. Alvarez, A. Jorge G. Andreas and S. Nikolai, A continuous framework for open pit mine planning. Math. Methods Oper. Res. 73 (2011) 29–54 [CrossRef] [MathSciNet] [Google Scholar]
  2. D. Bienstock and Z. Mark, Solving LP Relaxations of Large-Scale Precedence constrained problems. Proc. of 14th Conference on Integer Programming and Combinatorial Optimization (IPCO 2010). Vol. 6080 of Lect. Note Comput. Sci. Springer (2010) 1–14. [Google Scholar]
  3. G. Carlier, Duality and Existence for a Class of Mass Transportation Problems and Economic Applications, in Adv. Math. Econ. Springer, Japan (2003) 1–21 [Google Scholar]
  4. I. Ekeland, Existence, uniqueness and efficiency of equilibrium in hedonic markets with multidimensional types. Econ. Theory 42 (2010) 275–315 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  5. D. Espinoza, M. Goycoolea, E. Moreno and A.N. Newman, MineLib: A library of open pit mining problems. Ann. Oper. Res. 206 (2012) 91–114 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  6. A. Griewank and S. Nikolai, Duality results for stationary problems of open pit mine planning in a continuous function framework. Comput. Appl. Math. 30 (2011) 197–215. [MathSciNet] [Google Scholar]
  7. J. Guzmán, Ultimate Pit Limit Determination: A New Formulation for an Old (and Poorly Specified) Problem Workshop on Operations Research in Mining, Viña del Mar, Chile (2008) 10–12. [Google Scholar]
  8. P. Huttagosol and R.E. Cameron, A Computer Design of Ultimate Pit Limit by Using Transportation Algorithm, in Proc. of the 23rd International Symposium on Applications of Computers in Mining (1992) 443–460. [Google Scholar]
  9. Th. B. Johnson, Optimum open pit mine production scheduling. Report ORC-68-11, Operations Research Center. University of California Berkeley (1968). [Google Scholar]
  10. R. Khalokakaie, Computer-aided optimal open pit design with variable slope angles. Ph.D. thesis, University of Leeds (1999). [Google Scholar]
  11. R. Khalokakaie, P.A. Dowd and R.J. Fowell, Lerchs-Grossmann algorithm with variable slope angles. Mining Technology 109 (2000) 77–85. [CrossRef] [Google Scholar]
  12. G. Matheron, Paramétrage de contours optimaux. Note géostatistique 128. Fontainebleau. Février (1975). [Google Scholar]
  13. G. Matheron, Compléments sur le paramétrage de contours optimaux. Note géostatistique 129. Fontainebleau, Février (1975). [Google Scholar]
  14. N. Morales, Modelos Matemáticos Para Planificación Minera. Engineering thesis. Universidad de Chile, Santiago (2002). [Google Scholar]
  15. A.M. Newman, E. Rubio, R. Caro, A. Weintraub and K. Eurek, A review of operations research in mine planning. Interfaces 40 (2010) 222–245. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  16. J.-C. Picard, Maximal closure of a graph and applications to combinatorial problems. Manag. Sci. 22 (1976) 1268–1272 [CrossRef] [Google Scholar]
  17. Strogies, Nikolai, and Andreas Griewank, A PDE constraint formulation of Open Pit Mine Planning Problems. Proc. Appl. Math. Mech. 13 (2013) 391–392 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  18. D.M. Topkis, Minimizing a submodular function on a lattice. Oper. Res. 26 (1978) 305–321. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  19. C. Villani, Topics in Optimal Transportation. In vol. 58 of Grad. Stud. Math. AMS (2003). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you