Issue
ESAIM: M2AN
Volume 49, Number 6, November-December 2015
Special Issue - Optimal Transport
Page(s) 1671 - 1692
DOI https://doi.org/10.1051/m2an/2015038
Published online 05 November 2015
  1. H. Attouch, J. Bolte and B. Svaiter, Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward backward splitting, and regularized gauss-seidel methods. Math. Program. 137 (2013) 91–129. [CrossRef] [MathSciNet] [Google Scholar]
  2. H.H. Bauschke and P.L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces. Springer (2011). [Google Scholar]
  3. J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84 (2000) 375–393. [CrossRef] [MathSciNet] [Google Scholar]
  4. J.-D. Benamou, B.D. Froese and A.M. Oberman, Two numerical methods for the elliptic Monge-Ampère equation. ESAIM: M2AN 44 (2010) 737–758. [CrossRef] [EDP Sciences] [Google Scholar]
  5. J.-D. Benamou, B.D. Froese and A.M. Oberman, Numerical solution of the optimal transportation problem via viscosity solutions for the Monge-Ampère equation. CoRR, abs/1208.4873 (2012). [Google Scholar]
  6. J.-D. Benamou, B.D. Froese and A.M. Oberman, Numerical solution of the optimal transportation problem using the Monge-Ampère equation. J. Comput. Phys. 260 (2014) 107–126. [CrossRef] [MathSciNet] [Google Scholar]
  7. N. Bonnotte, From Knothe’s rearrangement to Brenier’s optimal transport map. SIAM J. Math. Anal. 45 (2013) 64–87. [CrossRef] [MathSciNet] [Google Scholar]
  8. R.I. Bot, E.R. Csetnek and A. Heinrich, On the convergence rate improvement of a primal-dual splitting algorithm for solving monotone inclusion problems. CoRR, abs/1303.2875 (2013). [Google Scholar]
  9. A. Bouharguane, E. Maitre, E. Oudet and N. Papadakis, Multiphysics optimal transportation and image analysis. Technical Report hal-00740671 (2012). [Google Scholar]
  10. A. Bouharguane, An. Iollo and L. Weynans, Numerical solution of the Monge−Kantorovich problem by Picard iterations. Technical Report RR-8477, INRIA (2014). [Google Scholar]
  11. Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44 (1991) 375–417. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  12. C. Brune, 4D imaging in tomography and optical nanoscopy. Ph.D. thesis, University of Münster, Germany (2010). [Google Scholar]
  13. G. Carlier, A. Galichon and F. Santambrogio, From knothe’s transport to brenier’s map and a continuation method for optimal transport. SIAM J. Math. Anal. 41 (2010) 2554–2576. [CrossRef] [Google Scholar]
  14. A. Chambolle, Rates of convergence for accelerated primal-dual algorithms. Presented in SIAM Conference on Imaging Sciences (2014). [Google Scholar]
  15. A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vision 40 (2011) 120–145. [CrossRef] [MathSciNet] [Google Scholar]
  16. P. Clarysse, B. Delhay, M. Picq and J. Pousin, Optimal extended optical flow subject to a statistical constraint. J. Comput. Appl. Math. 234 (2010) 1291–1302. [CrossRef] [MathSciNet] [Google Scholar]
  17. L. Condat, A primal-dual splitting method for convex optimization involving lipschitzian, proximable and linear composite terms. J. Optim. Theory Appl. 158 (2013) 460–479. [CrossRef] [MathSciNet] [Google Scholar]
  18. E.J. Dean and R. Glowinski, An augmented Lagrangian approach to the numerical solution of the dirichlet problem for the elliptic Monge-Ampère equation in two dimensions. Electron. Trans. Numer. Anal. 22 (2006) 71–96. [MathSciNet] [Google Scholar]
  19. J. Deny and J.-L. Lions, Les espaces du type de beppo levi. Ann. Inst. Fourier 5 (1954) 305–370. [CrossRef] [Google Scholar]
  20. R.J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and sobolev spaces. Inv. Math. 98 (1989) 511–547. [CrossRef] [MathSciNet] [Google Scholar]
  21. M. Fortin and R. Glowinski, Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems. Elsevier Science (1983). [Google Scholar]
  22. V. Girault and P.A. Raviart, Finite element methods for Navier-Stokes equations: theory and algorithms. Springer series in computational mathematics. Springer−Verlag (1986). [Google Scholar]
  23. S. Haker, L. Zhu, A. Tannenbaum and S. Angenent, Optimal mass transport for registration and warping. Int. J. Comput. Vision 60 (2004) 225–240. [CrossRef] [Google Scholar]
  24. F.H. Harlow and J.E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8 (1965) 2182–2189. [NASA ADS] [CrossRef] [Google Scholar]
  25. R. Hug, E. Maitre and N. Papadakis, On the convergence of augmented lagrangian method for optimal transport between nonnegative densities. Technical report, hal-01128793 (2015). [Google Scholar]
  26. A. Iollo and D. Lombardi, A lagrangian scheme for the solution of the optimal mass transfer problem. J. Comput. Phys. 230 (2011) 3430–3442. [CrossRef] [MathSciNet] [Google Scholar]
  27. R.J. McCann, Polar factorization of maps on riemannian manifolds. Geom. Funct. Anal. GAFA 11 (2001) 589–608. [CrossRef] [MathSciNet] [Google Scholar]
  28. A. Moussa, Some variants of the classical aubin-lions lemma. preprint arXiv:1401.7231 (2014). [Google Scholar]
  29. V.I. Oliker and L.D. Prussner, On the numerical solution of the equation Formula and its discretizations, i. Numer. Math. 54 (1989) 271–293. [CrossRef] [MathSciNet] [Google Scholar]
  30. N. Papadakis, G. Peyré and É. Oudet, Optimal transport with proximal splitting. SIAM J. Imaging Sci. 7 (2014) 212–238. [CrossRef] [MathSciNet] [Google Scholar]
  31. H. Raguet, J. Fadili and G. Peyré, A generalized forward-backward splitting. SIAM J. Imaging Sci. 6 (2013) 1199–1226. [CrossRef] [MathSciNet] [Google Scholar]
  32. G. Strang, Linear Algebra and Its Applications. Brooks Cole (1988). [Google Scholar]
  33. P. Tseng, Convergence of a block coordinate descent method for nondifferentiable minimization. J. Optim. Theory Appl. 109 (2001) 475–494. [CrossRef] [MathSciNet] [Google Scholar]
  34. C. Villani, Optimal Transport: Old and New. Grundlehren der mathematischen Wissenschaften. Springer (2008). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you