Free Access
Issue
ESAIM: M2AN
Volume 50, Number 2, March-April 2016
Page(s) 455 - 473
DOI https://doi.org/10.1051/m2an/2015053
Published online 02 March 2016
  1. J.-F. Babadjian, G.A. Francfort and M.G. Mora,Quasistatic evolution in non-associative plasticity – the cap model. SIAM J. Math. Anal. 44 (2012) 245–292. [CrossRef] [MathSciNet] [Google Scholar]
  2. J.F. Babadjian and V. Millot, Unilateral gradient flow of the Ambosio-Tortorelli functional by minimizing movements. Ann. Inst. Henri Poincaré (C) Anal. Non Lin. 31 (2014) 779–822. [Google Scholar]
  3. E. Bonnetier, L. Jakabčin, S. Labbé and A. Replumaz, Numerical simulation of a class of models that combine several mechanisms of dissipation: fracture, plasticity, viscous dissipation. J. Comput. Phys. 271 (2014) 397–414. [CrossRef] [Google Scholar]
  4. B. Bourdin, Une formulation variationnelle en mécanique de la rupture, théorie et mise en oeuvre numérique. Ph.D. thesis, Université Paris Nord (1998). [Google Scholar]
  5. B. Bourdin, Numerical implementation of the variational formulation of brittle fracture. Interfaces Free Bound. 9 (2007) 411–430. [Google Scholar]
  6. B. Bourdin, G. Francfort and J.J. Marigo, Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48 (2000) 797–826. [CrossRef] [MathSciNet] [Google Scholar]
  7. B. Bourdin, G. Francfort and J.J. Marigo, The variational approach to fracture. J. Elasticity 91 (2008) 1–148. [CrossRef] [Google Scholar]
  8. V. Chrismale, Globally stable quasistatic evolution for a coupled elasto-plastic damage model. Preprint CVGMT (2015). [Google Scholar]
  9. G. Dal Maso and R. Toader, Quasistatic crack growth in elasto-plastic materials: the two-dimensional case. Arch. Ration. Mech. Anal. 196 (2010) 867–906. [CrossRef] [Google Scholar]
  10. G. Dal Maso and R. Scala, Quasistatic evolution in perfect plasticity as limit of dynamic processes. J. Dyn. Differ. Equations 26 (2014) 915–954. [Google Scholar]
  11. G. Dal Maso, A. De Simone, M.G. Mora and M. Morini, A vanishing viscosity approach to quasistatic evolution in plasticity with softening. Arch. Ration. Mech. Anal. 189 (2008) 469–544. [CrossRef] [MathSciNet] [Google Scholar]
  12. L.C. Evans, Partial Differential Equations. Grad. Stud. Math. AMS, Rhode Island (1998). [Google Scholar]
  13. M. Focardi, On the variational approximation of free discontinuity problems in the vectorial case. Math. Models Methods Appl. Sci. 11 (2001) 663–684. [Google Scholar]
  14. G.A. Francfort and J.-J. Marigo, Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46 (1998) 1319–1342. [CrossRef] [MathSciNet] [Google Scholar]
  15. A. Giacomini, Ambrosio−Tortorelli approximation of quasi-static evolution of brittle fracture. Calc. Var. Partial Differ. Equations 22 129–172. [Google Scholar]
  16. L. Jakabčin, Modélisation, analyse et simulation numérique de solides combinant plasticité, rupture et dissipation visqueuse. Ph.D. thesis, Université Grenoble-Alpes (2014). [Google Scholar]
  17. L. Jakabčin, A visco-elasto-plastic model with regularized fracture. ESAIM: COCV 22 (2016) 148–168. [CrossRef] [EDP Sciences] [Google Scholar]
  18. C. J. Larsen, C. Ortner and E. Suli, Existence of solutions to a regularized model of dynamic fracture. Math. Models Methods Appl. Sci. 20 (2010) 1021–1048. [CrossRef] [Google Scholar]
  19. A. Mainik, A. Mielke, Existence results for energetic models for rate-independent systems. Calc. Var. Partial Differ. Equations 22 (2005) 73–99. [CrossRef] [MathSciNet] [Google Scholar]
  20. G. Peltzer and P. Tapponnier, Formation and evolution of strike-slip faults, rifts, and basins during the India-Asia collision: An experimental approach. J. Geophys. Res. 93 (1988) 15 085–15, 117. [Google Scholar]
  21. P. Suquet, Sur les équations de la plasticité: existence et régularité des solutions. J. Mécanique 20 (1981) 3–39. [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you