Free Access
Issue
ESAIM: M2AN
Volume 50, Number 2, March-April 2016
Page(s) 433 - 454
DOI https://doi.org/10.1051/m2an/2015052
Published online 24 February 2016
  1. J. Alberty, C. Carstensen and S.A. Funken, Remarks around 50 lines of Matlab: short finite element implementation. Numer. Algorithms 20 (1999) 117–137. [Google Scholar]
  2. M.S. Berger, On von Kármán equations and the buckling of a thin elastic plate, I the clamped plate. Commun. Pure Appl. Math. 20 (1967) 687–719. [CrossRef] [Google Scholar]
  3. M.S. Berger, Nonlinearity and functional analysis. Academic Press (1977). [Google Scholar]
  4. M.S. Berger and P.C. Fife, On von Kármán equations and the buckling of a thin elastic plate. Bull. Amer. Math. Soc. 72 (1966) 1006–1011. [Google Scholar]
  5. M.S. Berger and P.C. Fife, Von Kármán equations and the buckling of a thin elastic plate. II plate with general edge conditions. Commun. Pure Appl. Math. 21 (1968) 227–241. [CrossRef] [Google Scholar]
  6. H. Blum and R. Rannacher, On the boundary value problem of the biharmonic operator on domains with angular corners. Math. Methods Appl. Sci. 2 (1980) 556–581. [CrossRef] [MathSciNet] [Google Scholar]
  7. D. Braess, Finite Elements, Theory, Fast Solvers, and Applications in Elasticity Theory, 3rd edition. Cambridge (2007). [Google Scholar]
  8. S.C. Brenner, Forty years of the Crouzeix-Raviart element. Numer. Methods Partial Differ. Equations 31 (2015) 367–396. [CrossRef] [Google Scholar]
  9. S.C. Brenner, T. Gudi, M. Neilan and L.-Y. Sung, C0 penalty methods for the fully nonlinear Monge−Ampère equation. Math. Comput. 80 (2011) 1979–1995. [Google Scholar]
  10. S.C. Brenner and L. R. Scott, The mathematical theory of finite element methods, 3rd edition. Springer (2007). [Google Scholar]
  11. S. C. Brenner, L.-Y. Sung, H. Zhang and Y. Zhang, A Morley finite element method for the displacement obstacle problem of clamped Kirchhoff plates. J. Comput. Appl. Math. 254 (2013) 31–42. [CrossRef] [Google Scholar]
  12. F. Brezzi, Finite element approximations of the von Kármán equations. RAIRO Anal. Numér. 12 (1978) 303–312. [MathSciNet] [Google Scholar]
  13. P.G. Ciarlet, The finite element method for elliptic problems. North-Holland, Amsterdam (1978). [Google Scholar]
  14. P. G. Ciarlet, Mathematical Elasticity: Theory of Plates. In vol. II. North-Holland, Amsterdam (1997). [Google Scholar]
  15. L.C. Evans, Partial Differential Equations. In vol. 19. American Mathematical Society (1998). [Google Scholar]
  16. P. Grisvard, Singularities in Boundary Value Problems. Vol. RMA 22. Masson & Springer-Verlag (1992). [Google Scholar]
  17. J. Hu and Z.C. Shi, The best L2 norm error estimate of lower order finite element methods for the fourth order problem. J. Comput. Math. 30 (2012) 449–460. [CrossRef] [Google Scholar]
  18. S. Kesavan, Topics in Functional Analysis and Applications. New Age International Publishers (2008). [Google Scholar]
  19. G. H. Knightly, An existence theorem for the von Kármán equations. Arch. Ration. Mech. Anal. 27 (1967) 233–242. [CrossRef] [Google Scholar]
  20. P. Lascaux and P. Lesaint, Some nonconforming finite elements for the plate bending problem. RAIRO Anal. Numér. 9 (1975) 9–53. [Google Scholar]
  21. W. Ming and J. Xu, The Morley element for fourth order elliptic equations in any dimensions. Numer. Math. 103 (2006) 155–169. [CrossRef] [MathSciNet] [Google Scholar]
  22. T. Miyoshi, A mixed finite element method for the solution of the von Kármán equations. Numer. Math. 26 (1976) 255–269. [CrossRef] [MathSciNet] [Google Scholar]
  23. M. Neilan, A nonconforming Morley finite element method for the fully nonlinear Monge−Ampère equation. Numer. Math. 115 (2010) 371–394. [CrossRef] [MathSciNet] [Google Scholar]
  24. A. Quarteroni, Hybrid finite element methods for the von Kármán equations. Calcolo 16 (1979) 271–288. [CrossRef] [MathSciNet] [Google Scholar]
  25. L. Reinhart, On the numerical analysis of the von Kármán equations: mixed finite element approximation and continuation techniques. Numer. Math. 39 (1982) 371–404. [CrossRef] [MathSciNet] [Google Scholar]
  26. X. Xu, S.H. Lui and T. Rahaman, A two level additive Schwarz method for the Morley nonconforming element approximation of a nonlinear biharmonic equation. IMA J. Numer. Anal. 24 (2004) 97–122. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you