Free Access
Issue
ESAIM: M2AN
Volume 50, Number 2, March-April 2016
Page(s) 475 - 497
DOI https://doi.org/10.1051/m2an/2015050
Published online 02 March 2016
  1. A. Aggarwal, R.M. Colombo and P. Goatin, Nonlocal systems of conservation laws in several space dimensions. SIAM J. Numer. Anal. 53 (2015) 963–983. [CrossRef] [Google Scholar]
  2. P. Amorim, R.M. Colombo and A. Teixeira, On the numerical integration of scalar nonlocal conservation laws. ESAIM: M2AN 49 (2015) 19–37. [CrossRef] [EDP Sciences] [Google Scholar]
  3. R. Arditi and L. Ginzburg, Coupling in predator-prey dynamics: ratio dependence. J. Theoret. Biol. 139 (1989) 311–326. [CrossRef] [Google Scholar]
  4. M.S. Bartlett. On theoretical models for competitive and predatory biological systems. Biometrika 44 (1957) 27–42. [CrossRef] [Google Scholar]
  5. G.I. Bell, Mathematical model of clonal selection and antibody production. J. Theoret. Biol. 29 (1970) 191–232. [CrossRef] [Google Scholar]
  6. C. Chainais-Hillairet, Finite volume schemes for a nonlinear hyperbolic equation. Convergence towards the entropy solution and error estimate. ESAIM: M2AN 33 (1999) 129–156. [CrossRef] [EDP Sciences] [Google Scholar]
  7. C. Chainais-Hillairet and S. Champier, Finite volume schemes for nonhomogeneous scalar conservation laws: error estimate. Numer. Math. 88 (2001) 607–639. [CrossRef] [MathSciNet] [Google Scholar]
  8. R.M. Colombo and E. Rossi, Hyperbolic predators vs. parabolic prey. Commun. Math. Sci. 13 (2015) 369–400. [CrossRef] [Google Scholar]
  9. M.G. Crandall and A. Majda, Monotone difference approximations for scalar conservation laws. Math. Comput. 34 (1980) 1–21. [CrossRef] [MathSciNet] [Google Scholar]
  10. C.M. Dafermos, Hyperbolic conservation laws in continuum physics. In vol. 325 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. 2nd edition. Springer-Verlag, Berlin (2005). [Google Scholar]
  11. R. Eymard, T. Gallouët, M. Ghilani and R. Herbin, Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes. IMA J. Numer. Anal. 18 (1998) 563–594. [CrossRef] [MathSciNet] [Google Scholar]
  12. R.M. Goodwin, A Growth Cycle. In Socialism, Capitalism and Economic Growth, edited by C.H. Feinstein. Cambridge University Press (1967) 54–59. [Google Scholar]
  13. C.S. Holling, The components of predation as revealed by a study of small-mammal predation of the european pine sawfly. The Canadian Entomologist 91 (1959) 293–320. [Google Scholar]
  14. K.H. Karlsen and J.D. Towers, Convergence of the Lax-Friedrichs scheme and stability for conservation laws with a discontinous space-time dependent flux. Chinese Ann. Math. Ser. B 25 (2004) 287–318. [Google Scholar]
  15. A.J. Lotka, Elements of Physical Biology. Williams and Wilkins (1925). [Google Scholar]
  16. G.H. Pimbley, Jr, Periodic solutions of predator-prey equations simulating an immune response. I. Math. Biosci. 20 (1974) 27–51. [CrossRef] [Google Scholar]
  17. V. Volterra, Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Mem. Acad. Lincei Roma 2 (1926) 31–113. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you