Free Access
Issue
ESAIM: M2AN
Volume 50, Number 2, March-April 2016
Page(s) 381 - 414
DOI https://doi.org/10.1051/m2an/2015048
Published online 19 February 2016
  1. H. Amann, Linear and Quasilinear Parabolic Problems: Volume I: Abstract Linear Theory. Birkhäuser, Basel (1995). [Google Scholar]
  2. W. Bangerth, R. Hartmann and G. Kanschat, deal.II – a general purpose object oriented finite element library. ACM Trans. Math. Softw. 33 (2007) 24/1–24/27. [Google Scholar]
  3. R. Becker, D. Meidner and B. Vexler, Efficient numerical solution of parabolic optimization problems by finite element methods. Optim. Methods Softw. 22 (2007) 813–833. [CrossRef] [Google Scholar]
  4. A. Borzì and R. Griesse, Distributed optimal control of lambda-omega systems. J. Numer. Math. 14 (2006) 17–40. [CrossRef] [MathSciNet] [Google Scholar]
  5. Y. Bourgault, Y. Coudière and C. Pierre, Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology. Nonlin. Anal. Real World Appl. 10 (2009) 458–482. [Google Scholar]
  6. A.J. Brandão, E. Fernández-Cara, P.M. Magalhães and M.A. Rojas-Medar, Theoretical analysis and control results for the Fitzhugh-Nagumo equation. Electron. J. Differ. Eq. 2008 (2008) 1–20. [Google Scholar]
  7. T. Breiten and K. Kunisch, Compensator design for the monodomain equations with the Fitzhugh-Nagumo model. To appear in ESAIM: COCV (2016). Doi:10.1051/cocv/2015047 [Google Scholar]
  8. E. Casas, C. Ryll and F. Tröltzsch, Sparse optimal control of the Schlögl and FitzHugh–Nagumo systems. Comput. Meth. Appl. Math. 13 (2013) 415–442. [Google Scholar]
  9. M. Chipot, Elements of Nonlinear Analysis, Adv. Texts Series. Springer (2000). [Google Scholar]
  10. P. Colli Franzone, P. Deuflhard, B. Erdmann, J. Lang and L. Pavarino, Adaptivity in space and time for reaction-diffusion systems in electrocardiology. SIAM J. Sci. Comput. 28 (2006) 942–962. [CrossRef] [MathSciNet] [Google Scholar]
  11. P. Deuflhard and M. Weiser, Numerische Mathematik 3: Adaptive Lösung partieller Differentialgleichungen, De Gruyter Studium. De Gruyter (2011). [Google Scholar]
  12. J. Dieudonné, Foundations of Modern Analysis. Academic Press (1969). [Google Scholar]
  13. L.C. Evans, Partial Differential Equations. American Mathematical Society (2010). [Google Scholar]
  14. H.O. Fattorini, infinite Dimensional Linear Control Systems: The Time Optimal and Norm Optimal Problems. North-Holland Math. Stud. Elsevier Science, Amsterdam (2005). [Google Scholar]
  15. J.A. Griepentrog, H.-C. Kaiser and J. Rehberg, Heat kernel and resolvent properties for second order elliptic differential operators with general boundary conditions on Lp. Adv. Math. Sci. Appl. 11 (2001) 87–112. [MathSciNet] [Google Scholar]
  16. J.A. Griepentrog and L. Recke, Linear elliptic boundary value problems with non-smooth data: Normal solvability on Sobolev-Campanato spaces. Math. Nachr. 225 (2001) 39–74. [CrossRef] [MathSciNet] [Google Scholar]
  17. H. Hermes and J.P. Lasalle, Functional Analysis and Time Optimal Control. Math. Sci. Eng. Academic Press, New York (1969). [Google Scholar]
  18. K. Ito and K. Kunisch, Lagrange Multiplier Approach to Variational Problems and Applications. SIAM (2008). [Google Scholar]
  19. K. Ito and K. Kunisch, Semismooth Newton methods for time-optimal control for a class of ODEs. SIAM J. Control Optim. 48 (2010) 3997–4013. [CrossRef] [MathSciNet] [Google Scholar]
  20. K. Kunisch and A. Rund, Time optimal control of the monodomain model in cardiac electrophysiology. IMA J. Appl. Math. (2015). [Google Scholar]
  21. K. Kunisch and D. Wachsmuth, On time optimal control of the wave equation and its numerical realization as parametric optimization problem. SIAM J. Control Optim. 51 (2013) 1232–1262. [CrossRef] [MathSciNet] [Google Scholar]
  22. J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Vol. I. Springer (1972). [Google Scholar]
  23. J.D. Murray, Mathematical Biology I. An Introduction. In vol. 17 of Interdisciplinary Applied Mathematics. 3rd edition. Springer, New York (2002). [Google Scholar]
  24. C. Nagaiah, K. Kunisch and G. Plank, Optimal control approach to termination of re-entry waves in cardiac electrophysiology. J. Math. Biol. 67 (2013) 359–388. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  25. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. In vol. 44 of Appl. Math. Sci. Springer-Verlag, New York (1983). [Google Scholar]
  26. K. Pieper, Finite element discretization and efficient numerical solution of elliptic and parabolic sparse control problems. Ph.D. dissertation, Technische Universität München (2015). [Google Scholar]
  27. J.-P. Raymond and H. Zidani, Pontryagin’s principle for time-optimal problems. J. Optim. Theory Appl. 101 (1999) 375–402. [CrossRef] [MathSciNet] [Google Scholar]
  28. S.M. Robinson, Normal maps induced by linear transformations. Math. Oper. Res. 17 (1992) 691–714. [CrossRef] [MathSciNet] [Google Scholar]
  29. F. Schlögl, Chemical reaction models for non-equilibrium phase transitions. Z. Phys. A 253 (1972) 147–161. [Google Scholar]
  30. T. Steihaug, The conjugate gradient method and trust regions in large scale optimization. SIAM J. Numer. Anal. 20 (1983) 626–637. [CrossRef] [Google Scholar]
  31. J. Sundnes, G.T. Lines, X. Cai, B.F. Nielsen, K.-A. Mardal and A. Tveito, Computing the Electrical Activity in the Heart. Springer, Berlin, Heidelberg (2006). [Google Scholar]
  32. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators. In vol. 18 of North-Holland Math. Library. North-Holland Publ., Amsterdam (1978). [Google Scholar]
  33. F. Tröltzsch, Optimal Control of Partial Differential Equations. In vol. 112 of Grad. Stud. Math. AMS, Providence, Rhode Island (2010). [Google Scholar]
  34. L. Tung, A Bi-domain Model for Describing Ischemic Myocardial D-c Potentials. Ph.D. thesis, Massachusetts Institute of Technology (1978). [Google Scholar]
  35. M. Ulbrich, Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces. MOS-SIAM Series on Optimization. SIAM (2011). [Google Scholar]
  36. W.P. Ziemer, Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation. Springer (1989). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you