Free Access
Issue
ESAIM: M2AN
Volume 50, Number 2, March-April 2016
Page(s) 361 - 380
DOI https://doi.org/10.1051/m2an/2015047
Published online 19 February 2016
  1. Y. Achdou and J.-L. Guermond, Convergence analysis of a finite element projection/Lagrange–Galerkin method for the incompressible Navier–Stokes equations. SIAM J. Numer. Anal. 37 (2000) 799–826. [CrossRef] [MathSciNet] [Google Scholar]
  2. R. Barrett, M. Berry, T.F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine and H. van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia (1994). [Google Scholar]
  3. M. Benítez and A. Bermúdez, A second order characteristics finite element scheme for natural convection problems. J. Comput. Appl. Math. 235 (2011) 3270–3284. [CrossRef] [Google Scholar]
  4. R. Bermejo and L. Saavedra, Modified Lagrange–Galerkin methods of first and second order in time for convection-diffusion problems. Numer. Math. 120 (2012) 601–638. [CrossRef] [MathSciNet] [Google Scholar]
  5. A. Bermúdez, M.R. Nogueiras and C. Vázquez, Numerical analysis of convection-diffusion-reaction problems with higher order characteristics/finite elements. part II: fully discretized scheme and quadrature formulas. SIAM J. Numer. Anal. 44 (2006) 1854–1876. [CrossRef] [Google Scholar]
  6. K. Boukir, Y. Maday, B. Métivet and E. Razafindrakoto, A high-order characteristics/finite element method for the incompressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 25 (1997) 1421–1454. [CrossRef] [Google Scholar]
  7. F. Brezzi and J. Douglas Jr., Stabilized mixed methods for the Stokes problem. Numer. Math. 53 (1988) 225–235. [CrossRef] [MathSciNet] [Google Scholar]
  8. F. Brezzi and J. Pitkäranta, On the Stabilization of Finite Element Approximations of the Stokes Equations, In Efficient Solutions of Elliptic Systems, edited by W. Hackbusch. Vieweg, Wiesbaden (1984) 11–19. [Google Scholar]
  9. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). [Google Scholar]
  10. J. Douglas Jr. and T.F. Russell, Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19 (1982), 871–885. [Google Scholar]
  11. G. Duvaut and J.L. Lions, Inequalities in Mechanics and Physics. Springer, Berlin (1976). [Google Scholar]
  12. R.E. Ewing and T.F. Russell, Multistep Galerkin methods along characteristics for convection-diffusion problems, In Advances in Computer Methods for Partial Differential Equations, edited by R. Vichnevetsky and R.S. Stepleman. IMACS IV (1981) 28–36. [Google Scholar]
  13. L.P. Franca and R. Stenberg, Error analysis of some Galerkin least squares methods for the elasticity equations. SIAM J. Numer. Anal. 28 (1991) 1680–1697. [Google Scholar]
  14. V. Girault and P.-A. Raviart, Finite Element Methods for Navier–Stokes Equations, Theory and Algorithms. Springer, Berlin (1986). [Google Scholar]
  15. H. Jia, K. Li and S Liu, Characteristic stabilized finite element method for the transient Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 199 (2010) 2996–3004. [CrossRef] [Google Scholar]
  16. K.W. Morton, A. Priestley and E. Süli, Stability of the Lagrange–Galerkin method with non-exact integration. Model. Math. Anal. Num. 22 (1988) 625–653. [Google Scholar]
  17. H. Notsu, Numerical computations of cavity flow problems by a pressure stabilized characteristic-curve finite element scheme. Trans. Japan Soc. Comput. Eng. Sci. (2008) 20080032. [Google Scholar]
  18. H. Notsu and M. Tabata, A combined finite element scheme with a pressure stabilization and a characteristic-curve method for the Navier–Stokes equations. Trans. Japan Soc. Ind. Appl. Math. 18 (2008) 427–445 (in Japanese). [Google Scholar]
  19. H. Notsu and M. Tabata, A single-step characteristic-curve finite element scheme of second order in time for the incompressible Navier–Stokes equations. J. Scientific Comput. 38 (2009) 1–14. [CrossRef] [MathSciNet] [Google Scholar]
  20. H. Notsu and M. Tabata, Error estimates of a pressure-stabilized characteristics finite element scheme for the Oseen equations. J. Scientific Comput. 65 (2015) 940–955. [Google Scholar]
  21. O. Pironneau, On the transport-diffusion algorithm and its applications to the Navier–Stokes equations. Numer. Math. 38 (1982) 309–332. [CrossRef] [Google Scholar]
  22. O. Pironneau and M. Tabata, Stability and convergence of a Galerkin-characteristics finite element scheme of lumped mass type. Int. J. Numer. Methods Fluids 64 (2010) 1240–1253. [CrossRef] [Google Scholar]
  23. A. Priestley, Exact projections and the Lagrange–Galerkin method: a realistic alternative to quadrature. J. Comput. Phys. 112 (1994) 316–333. [CrossRef] [Google Scholar]
  24. H. Rui and M. Tabata, A second order characteristic finite element scheme for convection-diffusion problems, Numer. Math. 92 (2002) 161–177. [CrossRef] [MathSciNet] [Google Scholar]
  25. Y. Saad, Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003). [Google Scholar]
  26. A.H. Stroud, Approximate Calculation of Multiple Integrals. Prentice-Hall, Englewood Cliffs, New Jersey (1971). [Google Scholar]
  27. E. Süli, Convergence and nonlinear stability of the Lagrange–Galerkin method for the Navier–Stokes equations. Numer. Math. 53 (1988) 459–483. [CrossRef] [MathSciNet] [Google Scholar]
  28. M. Tabata, Discrepancy between theory and real computation on the stability of some finite element schemes. J. Comput. Appl. Math. 199 (2007) 424–431. [CrossRef] [Google Scholar]
  29. M. Tabata and S. Fujima, Robustness of a Characteristic Finite Element Scheme of Second Order in Time Increment, In Computational Fluid Dynamics 2004. Edited by C. Groth and D.W. Zingg. Springer (2006) 177–182. [Google Scholar]
  30. M. Tabata and S. Uchiumi, A genuinely stable Lagrange–Galerkin scheme for convection-diffusion problems. Preprint arXiv:1505.05984 [math.NA]. [Google Scholar]
  31. M. Tabata and S. Uchiumi, A Lagrange–Galerkin scheme with a locally linearized velocity for the Navier–Stokes equations. Preprint arXiv:1505.06681 [math.NA]. [Google Scholar]
  32. K. Tanaka, A. Suzuki and M. Tabata, A characteristic finite element method using the exact integration. Annual Report of Research Institute for Information Technology, Kyushu University 2 (2002) 11–18 (in Japanese). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you