Free Access
Issue
ESAIM: M2AN
Volume 50, Number 2, March-April 2016
Page(s) 415 - 431
DOI https://doi.org/10.1051/m2an/2015049
Published online 19 February 2016
  1. D.C. Barber and B.H. Brown, Applied potential tomography. J. Phys. E: Sci. Instrum. 17 (1984) 723–733. [CrossRef] [Google Scholar]
  2. L. Borcea, Electrical impedance tomography. Inv. Prob. 18 (2002) R99–R136. [Google Scholar]
  3. S. Brenner, L. R. Scott, The Mathematical Theory of Finite Element Method. Springer-Verlag (2008). [Google Scholar]
  4. M. Cheney, D. Isaacson and J. C. Newell, Electrical Impedance Tomography. SIAM Rev. 41 (1999) 85–101. [CrossRef] [MathSciNet] [Google Scholar]
  5. K.-S. Cheng, D. Isaacson, J.S. Newell and J.C. Newell, Electrode models for electric current computed tomography. IEEE Trans. Biomed. Engrg. 36, (1989) 918–924. [CrossRef] [PubMed] [Google Scholar]
  6. M. Costabel and M. Dauge, A singularly perturbed mixed boundary value problem. Commun. Partial Differ. Equ. 21 (1996) 1919–1949. [Google Scholar]
  7. M. Costabel, M. Dauge and M. Suri, Numerical approximation of a singularly perturbed contact problem, Comput. Methods Appl. Mech. Engrg. 157 (1998) 349–363. [CrossRef] [MathSciNet] [Google Scholar]
  8. J. Dardé, N. Hyvönen, A. Seppänen and S. Staboulis, Simultaneous recovery of admittivity and body shape in electrical impedance tomography: An experimental evaluation. Inv. Prob. 29 (2013) 085004. [CrossRef] [Google Scholar]
  9. R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. In vol. 2. Springer-Verlag, Berlin (1988). [Google Scholar]
  10. L.C. Evans, Partial Differential Equations, 2nd edition. Amer. Math. Soc. (2010). [Google Scholar]
  11. H. Hakula, L. Harhanen and N. Hyvönen, Sweep data of electrical impedance tomography. Inv. Prob. 27 (2011) 115006. [CrossRef] [Google Scholar]
  12. H. Hakula, N. Hyvönen and T. Tuominen, On hp-adaptive solution of complete electrode forward problems of electrical impedance tomography. J. Comput. Appl. Math. 236 (2012) 4635–4659. [CrossRef] [Google Scholar]
  13. M. Hanke, M. Brühl, Recent progress in electrical impedance tomography, Inv. Prob. 19 (2003) S65. [CrossRef] [Google Scholar]
  14. M. Hanke, B. Harrach and N. Hyvönen, Justification of point electrode models in electrical impedance tomography. Math. Models Methods Appl. Sci. 21 (2011) 1395–1413. [CrossRef] [Google Scholar]
  15. L. Harhanen, N. Hyvönen, H. Majander and S. Staboulis, Edge-enhancing reconstruction algorithm for three-dimensional electrical impedance tomography. Preprint arXiv:1406.1279 (2014). [Google Scholar]
  16. L.M. Heikkinen, T. Vilhunen, R.M. West and M. Vauhkonen, Simultaneous reconstruction of electrode contact impedances and internal electrical properties: II. Laboratory experiments. Meas. Sci. Technol. 13 (2002) 1855–1861. [CrossRef] [Google Scholar]
  17. N. Hyvönen, Complete electrode model of electrical impedance tomography: Approximation properties and characterization of inclusions. SIAM J. Appl. Math. 64 (2004) 902–931. [CrossRef] [Google Scholar]
  18. N. Hyvönen, Approximating idealized boundary data of electric impedance tomography by electrode measurements. Math. Models Methods Appl. Sci. 19 (2009) 1185–1202. [CrossRef] [Google Scholar]
  19. M. Juntunen and R. Stenberg, Nitsche’s method for general boundary conditions. Math. Comput. 78 (2008) 1353–1374. [Google Scholar]
  20. J-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, vol. I. Springer-Verlag, Berlin (1972). [Google Scholar]
  21. J. Nečas, Direct Methods in the Theory of Elliptic Equations. Springer–Verlag (2012). [Google Scholar]
  22. M. Pidcock, S. Ciulli and S. Ispas, Singularities of mixed boundary value problems in electrical impedance tomography. Physiol. Meas. 16 (1995) A213–A218. [CrossRef] [PubMed] [Google Scholar]
  23. G. Savaré, Regularity and perturbation results for mixed second order elliptic problems. Commun. Partial Differ. Equ. 22 (1997) 869–899. [Google Scholar]
  24. E. Somersalo, M. Cheney and D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography. SIAM J. Appl. Math. 52 (1992) 1023–1040. [CrossRef] [Google Scholar]
  25. G. Uhlmann, Electrical impedance tomography and Calderón’s problem. Inv. Prob. 25 (2009) 123011. [CrossRef] [Google Scholar]
  26. P. J. Vauhkonen, M. Vauhkonen, T. Savolainen, and J. P. Kaipio, Three-dimensional electrical impedance tomography based on the complete electrode model. IEEE Trans. Biomed. Eng. 46 (1999) 1150–1160. [CrossRef] [PubMed] [Google Scholar]
  27. T. Vilhunen, J. P. Kaipio, P. J. Vauhkonen, T. Savolainen and M. Vauhkonen, Simultaneous reconstruction of electrode contact impedances and internal electrical properties: I. Theory. Meas. Sci. Technol. 13 (2002) 1848–1854. [CrossRef] [Google Scholar]
  28. J. Wloka, Partial Differential Equations. Cambridge University Press (1982). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you