Issue
ESAIM: M2AN
Volume 50, Number 3, May-June 2016
Special Issue – Polyhedral discretization for PDE
Page(s) 635 - 650
DOI https://doi.org/10.1051/m2an/2015051
Published online 23 May 2016
  1. T. Arbogast, M.F. Wheeler and I. Yotov, Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences. SIAM J. Numer. Anal. 34 (1997) 828–852. [CrossRef] [MathSciNet] [Google Scholar]
  2. B. Ayuso de Dios, K. Lipnikov and G. Manzini, The nonconforming virtual element method. Preprint arxiv:1405.3741 (2014). [Google Scholar]
  3. L. Beirão da Veiga, K. Lipnikov and G. Manzini, The Mimetic Finite Difference Method for Elliptic Problems. MS&A. Springer (2014). [Google Scholar]
  4. J. Bonelle and A. Ern, Analysis of compatible discrete operator schemes for elliptic problems on polyhedral meshes. ESAIM: M2AN 48 (2014) 553–581. [CrossRef] [EDP Sciences] [Google Scholar]
  5. F. Brezzi, K. Lipnikov and M. Shashkov, Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 43 (2005) 1872–1896. [Google Scholar]
  6. F. Brezzi, K. Lipnikov, M. Shashkov and V. Simoncini, A new discretization methodology for diffusion problems on generalized polyhedral meshes. Comput. Methods Appl. Mech. Engrg. 196 (2007) 3682–3692. [CrossRef] [MathSciNet] [Google Scholar]
  7. P. Castillo, B. Cockburn, I. Perugia and D. Schötzau, An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38 (2000) 1676–1706. [CrossRef] [MathSciNet] [Google Scholar]
  8. Z. Chen, BDM mixed methods for a nonlinear elliptic problem. J. Comput. Appl. Math. 53 (1994) 207–223. [CrossRef] [MathSciNet] [Google Scholar]
  9. B. Cockburn, J. Gopalakrishnan and R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47 (2009) 1319–1365. [CrossRef] [MathSciNet] [Google Scholar]
  10. B. Cockburn, J. Gopalakrishnan and F.-J. Sayas, A projection-based error analysis of HDG methods. Math. Comput. 79 (2010) 1351–1367. [CrossRef] [MathSciNet] [Google Scholar]
  11. B. Cockburn, W. Qiu and K. Shi, Conditions for superconvergence of HDG methods for second-order elliptic problems. Math. Comput. 81 (2012) 1327–1353. [Google Scholar]
  12. B. Cockburn and K. Shi, Devising HDG methods for Stokes flow: An overview. Comput. Fluids 98 (2014) 221–229. [CrossRef] [MathSciNet] [Google Scholar]
  13. D.A. Di Pietro, J. Droniou and A. Ern, A discontinuous-skeletal method for advection-diffusion-reaction on general meshes. SIAM J. Numer. Anal. 53 (2015) 2135–2157. [CrossRef] [MathSciNet] [Google Scholar]
  14. D.A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods. Vol. 69 of Math. Appl. Springer-Verlag, Berlin (2012). [Google Scholar]
  15. D.A. Di Pietro and A. Ern, Equilibrated tractions for the Hybrid High-Order method. C. R. Acad. Sci Paris, Ser. I 353 (2015) 279–282. [CrossRef] [Google Scholar]
  16. D.A. Di Pietro, and A. Ern, A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Meth. Appl. Mech. Engrg. 283 2015 1–21. [Google Scholar]
  17. D.A. Di Pietro, and A. Ern, Hybrid high-order methods for variable-diffusion problems on general meshes. C. R. Acad. Sci Paris, Ser. I 353 (2015) 31–34. [Google Scholar]
  18. D.A. Di Pietro, A. Ern and S. Lemaire. An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Meth. Appl. Math. 14 (2014) 461–472. [Google Scholar]
  19. D.A. Di Pietro and S. Lemaire, An extension of the Crouzeix–Raviart space to general meshes with application to quasi-incompressible linear elasticity and Stokes flow. Math. Comput. 84 (2015) 1–31. [CrossRef] [Google Scholar]
  20. J. Droniou and R. Eymard, A mixed finite volume scheme for anisotropic diffusion problems on any grid. Numer. Math. 105 (2006) 35–71. [CrossRef] [MathSciNet] [Google Scholar]
  21. J. Droniou, R. Eymard, T. Gallouët and R. Herbin, A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods. M3AS Math. Models Methods Appl. Sci. 20 (2010) 1–31. [CrossRef] [Google Scholar]
  22. T. Dupont and R. Scott, Polynomial approximation of functions in Sobolev spaces. Math. Comput. 34 (1980) 441–463. [CrossRef] [MathSciNet] [Google Scholar]
  23. R. Eymard, T. Gallouët and R. Herbin, Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes. SUSHI: a scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal. 30 (2010) 1009–1043. [CrossRef] [MathSciNet] [Google Scholar]
  24. R. Herbin and F. Hubert, Benchmark on Discretization Schemes for Anisotropic Diffusion Problems on General Grids. In Finite Volumes for Complex Applications V. Edited by R. Eymard and J.-M. Hérard. John Wiley and Sons (2008) 659–692. [Google Scholar]
  25. H. Kabaria, A. Lew and B. Cockburn, A hybridizable discontinuous Galerkin formulation for nonlinear elasticity. Comput. Methods Appl. Mech. Engrg. 283 (2015) 303–329. [CrossRef] [MathSciNet] [Google Scholar]
  26. J. Koebbe, A computationally efficient modification of mixed finite element methods for flow problems with full transmissivity tensors. Numer. Methods Partial Differ. Equ. 9 (1993) 339–355. [CrossRef] [Google Scholar]
  27. Y. Kuznetsov, K. Lipnikov and M. Shashkov, Mimetic finite difference method on polygonal meshes for diffusion-type problems. Comput. Geosci. 8 (2004) 301–324. [CrossRef] [MathSciNet] [Google Scholar]
  28. C. Le Potier, A finite Volume Method for the Approximation of Highly Anisotropic Diffusion Operators on Unstructured Meshes. In Finite Volumes for Complex Applications IV (2005). [Google Scholar]
  29. C. Lehrenfeld, Hybrid Discontinuous Galerkin methods for incompressible flow problems. Diploma thesis, MathCCES/IGPM, RWTH Aachen (2010). [Google Scholar]
  30. K. Lipnikov and G. Manzini. A high-order mimetic method on unstructured polyhedral meshes for the diffusion equation. J. Comput. Phys. 272 (2014) 360–385. [CrossRef] [Google Scholar]
  31. I. Oikawa, A hybridized discontinuous Galerkin method with reduced stabilization. J. Sci. Comput. 65 (2015) 327–340. [CrossRef] [MathSciNet] [Google Scholar]
  32. W. Qiu and K. Shi, An HDG method for linear elasticity with strongly symmetric stresses. Preprint arXiv:1312.1407 (2015). [Google Scholar]
  33. W. Qiu and K. Shi. An HDG method for convection-diffusion equations. J. Sci. Comput. 66 (2016) 346–357. [Google Scholar]
  34. S.-C. Soon, Hybridizable discontinuous Galerkin methods for solid mechanics. Ph.D. thesis, University of Minnesota, Minneapolis (2008). [Google Scholar]
  35. S.-C. Soon, B. Cockburn and H.K. Stolarski, A hybridizable discontinuous Galerkin method for linear elasticity. Int. J. Numer. Methods Engrg. 80 (2009) 1058–1092. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you