Issue
ESAIM: M2AN
Volume 50, Number 3, May-June 2016
Special Issue – Polyhedral discretization for PDE
Page(s) 633 - 634
DOI https://doi.org/10.1051/m2an/2016034
Published online 23 May 2016
  1. P.F. Antonietti, L. Formaggia, A. Scotti, M. Verani and N. Verzotti, Mimetic finite difference approximation of flows in fractured porous media. ESAIM: M2AN 50 (2016) 809–832. Doi:10.1051/m2an/2015087 [CrossRef] [EDP Sciences] [Google Scholar]
  2. B. Ayuso de Dios, K. Lipnikov and G. Manzini, The nonconforming virtual element method. ESAIM: M2AN 50 (2016) 879–904. Doi:10.1051/m2an/2015090 [CrossRef] [EDP Sciences] [Google Scholar]
  3. L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L.D. Marini and A. Russo, Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013) 199–214. [CrossRef] [Google Scholar]
  4. L. Beirão da Veiga, F. Brezzi, L.D. Marini and A. Russo, The hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24 (2014) 1541–1573. [CrossRef] [Google Scholar]
  5. L. Beirão da Veiga, K. Lipnikov and G. Manzini, The mimetic finite difference method for elliptic problems. Vol. 11 of MS&A. Model. Simul. Appl. Springer-Verlag (2014). [Google Scholar]
  6. L. Beirão da Veiga, F. Brezzi, L.D. Marini and A. Russo, Mixed virtual element methods for general second order elliptic problems on polygonal meshes. ESAIM: M2AN 50 (2016) 727–747. Doi:10.1051/m2an/2015067 [CrossRef] [EDP Sciences] [Google Scholar]
  7. J. Bonelle and A. Ern, Analysis of compatible discrete operator schemes for elliptic problems on polyhedral meshes. ESAIM: M2AN 48 (2014) 553–581. [CrossRef] [EDP Sciences] [Google Scholar]
  8. F. Brezzi, K. Lipnikov and M. Shashkov, Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 43 (2005) 1872–1896. [Google Scholar]
  9. A. Cangiani, E.H. Georgoulis and P. Houston, hp-version discontinuous galerkin methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 24 (2014) 2009–2041. [CrossRef] [Google Scholar]
  10. A. Cangiani, Z. Dong, E.H. Georgoulis and P. Houston, hp-version discontinuous Galerkin methods for advection-diffusion-reaciton problems on polytopic meshes. ESAIM: M2AN 50 (2016) 699–725. Doi:10.1051/m2an/2015059 [CrossRef] [EDP Sciences] [Google Scholar]
  11. S.H. Christiansen and A. Gillette, Construction of some minimal finite element systems. ESAIM: M2AN 50 (2016) 833–850. Doi:10.1051/m2an/2015089 [CrossRef] [EDP Sciences] [Google Scholar]
  12. B. Cockburn, J. Gopalakrishnan and R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47 (2009) 1319–1365. [CrossRef] [MathSciNet] [Google Scholar]
  13. B. Cockburn, D.A. Di Pietro and A. Ern, Bridging the Hybrid High-Order and Hybridizable discontinuous Galerkin methods. ESAIM: M2AN 50 (2016) 635–650. Doi:10.1051/m2an/2015051 [CrossRef] [EDP Sciences] [Google Scholar]
  14. L. Codecasa, R. Specogna and F. Trevisan, Geometrically defined basis functions for polyhedral elements with applications to computational electromagnetics. ESAIM: M2AN 50 (2016) 677–698. Doi:10.1051/m2an/2015077 [CrossRef] [EDP Sciences] [Google Scholar]
  15. D.A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods. Vol. 69 of Math. Appl. Springer-Verlag, Berlin (2012). [Google Scholar]
  16. D.A. Di Pietro and A. Ern, A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Methods Appl. Mech. Engrg. 283 (2015) 1–21. [Google Scholar]
  17. D.A. Di Pietro, A. Ern and S. Lemaire, An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Methods Appl. Math. 14 (2014) 461–472. [CrossRef] [MathSciNet] [Google Scholar]
  18. J. Droniou, R. Eymard, T. Gallouët and R. Herbin, A unified approach to Mimetic Finite Difference, Hybrid Finite Volume and Mixed Finite Volume methods. Math. Models Methods Appl. Sci. 20 (2010) 265–295. [CrossRef] [MathSciNet] [Google Scholar]
  19. J. Droniou, R. Eymard, T. Gallouët and R. Herbin, Gradient schemes: a generic framework for the discretisation of linear, nonlinear and nonlocal elliptic and parabolic equations. Math. Models Methods Appl. Sci. 23 (2013) 2395–2432. [Google Scholar]
  20. J. Droniou, R. Eymard and R. Herbin, Gradient schemes: Generic tools for the numerical analysis of diffusion equations. ESAIM: M2AN 50 (2016) 749–781. Doi:10.1051/m2an/2015079 [CrossRef] [EDP Sciences] [Google Scholar]
  21. A. Gillette and A. Rand, Interpolation error estimates for harmonic coordinates on polytopes. ESAIM: M2AN 50 (2016) 651–676. Doi:10.1051/m2an/2015096 [CrossRef] [EDP Sciences] [Google Scholar]
  22. V. Gyrya, K. Lipnikov and G. Manzini, The arbitrary order mixed mimetic finite difference method for the diffusion equation. ESAIM: M2AN 50 (2016) 851–877. Doi:10.1051/m2an/2015088 [CrossRef] [EDP Sciences] [Google Scholar]
  23. I. Perugia, P. Pietra and A. Russo, A plane wave virtual element method for the Helmholtz problem. ESAIM: M2AN 50 (2016) 783–808. Doi:10.1051/m2an/2015066 [CrossRef] [EDP Sciences] [Google Scholar]
  24. N. Sukumar and A. Tabarraei, Conforming polygonal finite elements. Internat. J. Numer. Methods Engrg. 61 (2004) 2045–2066. [Google Scholar]
  25. C. Talischi, G.H. Paulino, A. Pereira and I.F.M. Menezes, Polygonal finite elements for topology optimization: A unifying paradigm. Internat. J. Numer. Methods Engrg. 82 (2010) 671–698. [Google Scholar]
  26. J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems. J. Comput. Appl. Math. 241 (2013) 103–115. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you