Free Access
Issue
ESAIM: M2AN
Volume 50, Number 5, September-October 2016
Page(s) 1523 - 1560
DOI https://doi.org/10.1051/m2an/2015092
Published online 20 September 2016
  1. A. Abourou Ella and A. Rougirel, Steady state bifurcations for phase field crystal equations with underlying two dimensional kernel. Electron. J. Qual. Theory Differ. Equ. 60 (2015) 1–36. [CrossRef] [Google Scholar]
  2. N.E. Alaa and M. Pierre, Convergence to equilibrium for discretized gradient-like systems with analytic features. IMA J. Numer. Anal. 33 (2013) 1291–1321. [CrossRef] [MathSciNet] [Google Scholar]
  3. R. Backofen, A. Rätz and A. Voigt, Nucleation and growth by a phase field crystal (PFC) model. Philos. Mag. Lett. 87 (2007) 813–820. [CrossRef] [Google Scholar]
  4. A. Baskaran, Z. Hu, J. S. Lowengrub, C. Wang, S.M. Wise and P. Zhou, Energy stable and efficient finite-difference nonlinear multigrid schemes for the modified phase field crystal equation. J. Comput. Phys. 250 (2013) 270–292. [CrossRef] [Google Scholar]
  5. A. Baskaran, J. S. Lowengrub, C. Wang and S.M. Wise, Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 51 (2013) 2851–2873. [CrossRef] [Google Scholar]
  6. J. Bolte, A. Daniilidis, O. Ley and L. Mazet, Characterizations of Łojasiewicz inequalities: subgradient flows, talweg, convexity. Trans. Amer. Math. Soc. 362 (2010) 3319–3363. [Google Scholar]
  7. M. Cheng and J. A. Warren, An efficient algorithm for solving the phase field crystal model. J. Comput. Phys. 228 (2009) 5323–5339. [CrossRef] [Google Scholar]
  8. K.R. Elder and M. Grant, Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystal. Phys. Rev. E 90 (2004) 051605. [CrossRef] [Google Scholar]
  9. K.R. Elder, M. Katakowski, M. Haataja and M. Grant, Modeling elasticity in crystal growth. Phys. Rev. Lett. 88 (2002) 245701. [CrossRef] [PubMed] [Google Scholar]
  10. C.M. Elliott, The Cahn–Hilliard model for the kinetics of phase separation, in Mathematical models for phase change problems (Òbidos 1988). Birkhäuser, Basel (1989) 35–73. [Google Scholar]
  11. M. Elsey and B. Wirth, A simple and efficient scheme for phase field crystal simulation. ESAIM: M2AN 47 (2013) 1413–1432. [CrossRef] [EDP Sciences] [Google Scholar]
  12. H. Emmerich, L. Gránásy and H. Löven, Selected issues of phase-field crystal simulations. Eur. Phys. J. Plus 126 (2011) 102. [CrossRef] [Google Scholar]
  13. H. Emmerich, H. Löwen, R. Wittkowskib, T. Gruhna, G. I. Tóth, G. Tegze and L. Gránásy, Phase field-crystal models for condensed matter dynamics on atomic length and diffusive time scales: an overview. Adv. Phys. 61 (2012) 665–743. [CrossRef] [Google Scholar]
  14. E. Feireisl and F. Simondon, Convergence for semilinear degenerate parabolic equations in several space dimensions. J. Dyn. Differ. Equ. 12 (2000) 647–673. [CrossRef] [Google Scholar]
  15. P. Galenko and K. Elder, Marginal stability analysis of the phase field crystal model in one spatial dimension. Phys. Rev. B 83 (2011) 064113. [CrossRef] [Google Scholar]
  16. P. Galenko and D. Jou, Diffuse-interface model for rapid phase transformations in nonequilibrium systems. Phys. Rev. E 71 (2005) 046125. [CrossRef] [Google Scholar]
  17. P. Galenko, D. Danilov and V. Lebedev, Phase-field-crystal and Swift-Hohenberg equations with fast dynamics. Phys. Rev. E 79 (2009) 051110. [CrossRef] [MathSciNet] [Google Scholar]
  18. P.K. Galenko, H. Gomez, N.V. Kropotin and K.R. Elder, Unconditionally stable and numerical solution of the hyperbolic phase-field crystal equation. Phys. Rev. E 88 (2013) 013310. [CrossRef] [Google Scholar]
  19. H. Gomez and T.J.R. Hughes, Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models. J. Comput. Phys. 230 (2011) 5310–5327. [CrossRef] [MathSciNet] [Google Scholar]
  20. H. Gomez and X. Nogueira, An unconditionally energy-stable method for the phase field crystal equation. Comput. Methods Appl. Mech. Engrg. 249/252 (2012) 52–61. [CrossRef] [Google Scholar]
  21. M. Grasselli and M. Pierre, A splitting method for the Cahn–Hilliard equation with inertial term. Math. Models Methods Appl. Sci. 20 (2010) 1–28. [CrossRef] [MathSciNet] [Google Scholar]
  22. M. Grasselli and M. Pierre, Convergence to equilibrium of solutions of the backward Euler scheme for asymptotically autonomous second-order gradient-like systems. Commun. Pure Appl. Anal. 11 (2012) 2393–2416. [CrossRef] [MathSciNet] [Google Scholar]
  23. M. Grasselli and H. Wu, Well-posedness and longtime behavior for the modified phase-field crystal equation. Math. Models Methods Appl. Sci. 24 (2014) 2743–2783. [CrossRef] [MathSciNet] [Google Scholar]
  24. M. Grasselli and H. Wu, Robust exponential attractors for the modified phase-field crystal equation. Discrete Contin. Dyn. Syst. Ser. A 35 (2015) 2539–2564. [CrossRef] [Google Scholar]
  25. M. Grasselli, G. Schimperna, A. Segatti and S. Zelik, On the 3D Cahn–Hilliard equation with inertial term. J. Evol. Equ. 9 (2009) 371–404. [CrossRef] [MathSciNet] [Google Scholar]
  26. M. Grasselli, G. Schimperna and S. Zelik, On the 2D Cahn–Hilliard equation with inertial term. Comm. Partial Differential Equ. 34 (2009) 137–170. [CrossRef] [Google Scholar]
  27. M. Grasselli, G. Schimperna and S. Zelik, Trajectory and smooth attractors for Cahn–Hilliard equations with inertial term. Nonlin. 23 (2010) 707–737. [CrossRef] [Google Scholar]
  28. F. Hecht, New development in FreeFem++. J. Numer. Math. 20 (2012) 251–265. [CrossRef] [MathSciNet] [Google Scholar]
  29. Z. Hu, S. Wise, C. Wang and J. Lowengrub, Stable and efficient finite-difference nonlinear-multigrid schemes for the phase-field crystal equation. J. Comput. Phys. 228 (2009) 5323–5339. [CrossRef] [Google Scholar]
  30. S.-Z. Huang and P. Takáč, Convergence in gradient-like systems which are asymptotically autonomous and analytic. Nonlin. Anal. 46 (2001) 675–698. [CrossRef] [Google Scholar]
  31. J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Gauthier-Villars, Paris (1969). [Google Scholar]
  32. S. Łojasiewicz, Ensembles semi-analytiques. I.H.E.S Lecture note, Ecole Polytechnique, Paris (1965). [Google Scholar]
  33. B. Merlet and M. Pierre, Convergence to equilibrium for the backward Euler scheme and applications. Commun. Pure Appl. Anal. 9 (2010) 685–702. [CrossRef] [MathSciNet] [Google Scholar]
  34. H. Ohnogi and Y. Shiwa, Instability of spatially periodic patterns due to a zero mode in the phase-field crystal equation. Physica D. 237 (2008) 3046–3052. [CrossRef] [MathSciNet] [Google Scholar]
  35. M. Pierre and A. Rougirel, Stationary solutions to phase field crystal equations. Math. Methods Appl. Sci. 34 (2011) 278–308. [CrossRef] [MathSciNet] [Google Scholar]
  36. N. Provatas, J.A. Dantzig, B. Athreya, P. Chan, P. Stefanovic, N. Goldenfeld and K.R. Elder, Using the phase-field crystal method in the multi-scale modeling of microstructure evolution. J. Miner. Metals Mater. Soc. 59 (2007) 83–90. [CrossRef] [Google Scholar]
  37. J. Simon, Compact sets in the space Lp(0,T;B). Ann. Mat. Pura Appl. 146 (1987) 65–96. [Google Scholar]
  38. P. Stefanovic, M. Haataja and N. Provatas, Phase-field crystals with elastic interactions. Phys. Rev. Lett. 96 (2006) 225504. [CrossRef] [PubMed] [Google Scholar]
  39. P. Stefanovic, M. Haataja and N. Provatas, Phase-field crystal study of deformation and plasticity in nanocrystalline materials. Phys. Rev. E 80 (2009) 046107. [CrossRef] [Google Scholar]
  40. J. Swift and P.C. Hohenberg, Hydrodynamic fluctuations at the convective instability. Phys. Rev. A 15 (1977) 317–328. [Google Scholar]
  41. C. Wang and S.M. Wise, Global smooth solutions of the three-dimensional modified phase field crystal equation. Methods Appl. Anal. 17 (2010) 191–211. [CrossRef] [MathSciNet] [Google Scholar]
  42. C. Wang and S.M. Wise, An energy stable and convergent finite-difference scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 49 (2011) 945–969. [CrossRef] [MathSciNet] [Google Scholar]
  43. S. Wise, C. Wang and J. Lowengrub, An energy-stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J. Numer. Anal. 47 (2009) 2269–2288. [CrossRef] [MathSciNet] [Google Scholar]
  44. X. Wu, G.J. van Zwieten and K.G. van der Zee, Stabilized second-order convex splitting schemes for Cahn–Hilliard models with application to diffuse-interface tumor-growth models. Int. J. Numer. Methods Biomed. Eng. 30 (2014) 180–203. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you