Free Access
Issue
ESAIM: M2AN
Volume 50, Number 5, September-October 2016
Page(s) 1269 - 1287
DOI https://doi.org/10.1051/m2an/2015078
Published online 14 July 2016
  1. B. Andreianov, New approches to describing admissibility of solutions of scalar conservation laws with discontinuous flux. ESAIM Proc. Surv. 50 (2015) 40–65. [CrossRef] [Google Scholar]
  2. B. Andreianov and C. Cancès, On interface transmission conditions for conservation laws with discontinuous flux of general shape. J. Hyperbolic Differ. Equ. 12 (2015) 343–384. [CrossRef] [MathSciNet] [Google Scholar]
  3. B. Andreianov, P. Goatin and N. Seguin, Finite volume schemes for locally constrained conservation laws. Numer. Math. 115 (2010) 609–645. [CrossRef] [MathSciNet] [Google Scholar]
  4. B. Andreianov, K.H. Karlsen and N.H. Risebro, A theory of L1-dissipative solvers for scalar conservation laws with discontinuous flux. Arch. Ration. Mech. Anal. 201 (2011) 27–86. [Google Scholar]
  5. B. Andreianov, C. Donadello and M.D. Rosini, Crowd dynamics and conservation laws with nonlocal constraints and capacity drop. Math. Models Methods Appl. Sci. 24 (2014) 2685–2722. [CrossRef] [MathSciNet] [Google Scholar]
  6. B. Andreianov, C. Donadello, U. Razafison and M.D. Rosini, Riemann problems with non–local point constraints and capacity drop. Math. Biosci. Eng. 12 (2015) 259–278. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  7. A. Aw and M. Rascle, Resurrection of “second order” models of traffic flow. SIAM J. Appl. Math. 60 (2000) 916–938. [CrossRef] [MathSciNet] [Google Scholar]
  8. D.S. Bale, R. Leveque, S. Mitran and J.A. Rossmanith, A wave propagation method for conservation laws and balance laws with spatially varying flux functions. SIAM J. Sci. Comput. 24 (2002) 955–978. [CrossRef] [MathSciNet] [Google Scholar]
  9. E.M. Cepolina, Phased evacuation: An optimisation model which takes into account the capacity drop phenomenon in pedestrian flows. Fire Safety J. 44 (2009) 532–544. [CrossRef] [Google Scholar]
  10. C. Cancès and N. Seguin, Error estimate for Godounov approximation of locally constrained conservation laws SIAM J. Numer. Anal. 50 (2012) 3036–3060. [CrossRef] [MathSciNet] [Google Scholar]
  11. C. Chalons, Numerical Approximation of a Macroscopic Model of Pedestrian Flows. SIAM J. Sci. Comput. 29 (2007) 539–555. [CrossRef] [MathSciNet] [Google Scholar]
  12. C. Chalons, P. Goatin and N. Seguin, General constrained conservation laws. Application to pedestrian flow modeling. Netw. Heterog. Media 8 (2013) 433–463. [Google Scholar]
  13. R.M. Colombo and M.D. Rosini, Pedestrian flows and non-classical shocks. Math. Methods Appl. Sci. 28 (2005) 1553–1567. [CrossRef] [MathSciNet] [Google Scholar]
  14. R.M. Colombo and P. Goatin, A well posed conservation law with a variable unilateral constraint. J. Differ. Equ. 234 (2007) 654–675. [CrossRef] [Google Scholar]
  15. R.M. Colombo and M.D. Rosini, Existence of nonclassical solutions in a Pedestrian flow model. Nonlin. Anal. Real World Appl. 10 (2009) 2716–2728. [Google Scholar]
  16. R.M. Colombo, G. Facchi, G. Maternini and M.D. Rosini, On the continuum modeling of crowds. In vol. 67 of Hyperbolic Problems: Theory, Numerics and Applications, Proc. of Sympos. Appl. Math. AMS, Providence, RI (2009) 517–526. [Google Scholar]
  17. R.M. Colombo, P. Goatin, and M.D. Rosini, A macroscopic model for pedestrian flows in panic situations. GAKUTO Int. Series Math. Sci. Appl. 32 (2010) 255–272. [Google Scholar]
  18. R.M. Colombo, P. Goatin and M.D. Rosini, On the modelling and management of traffic. ESAIM: M2AN 45 (2011) 853–872. [CrossRef] [EDP Sciences] [Google Scholar]
  19. E. Godlewski and P.-A. Raviart, Numerical approximation of hyperbolic systems of conservation laws. Springer Verlag, New York (1996). [Google Scholar]
  20. B.D. Greenshields, A Study of Traffic Capacity, In vol. 14 of Proc. Highway Res. Board (1934) 448–477. [Google Scholar]
  21. D. Helbing, I. Farkas and T. Vicsek, Simulating dynamical features of escape panic. Nature 407 (2000) 487–490. [CrossRef] [PubMed] [Google Scholar]
  22. D. Helbing, A. Johansson and H.Z. Al-Abideen, Dynamics of crowd disasters: An empirical study. Phys. Rev. E 75 (2007) 046109. [CrossRef] [Google Scholar]
  23. S.P. Hoogendoorn and W. Daamen, Pedestrian behavior at bottlenecks. Transport. Sci. 39 (2005) 147–159. [CrossRef] [Google Scholar]
  24. R.L. Hughes, The flow of human crowds. Annu. Rev. Fluid Mech. 35 (2003) 169–182. [CrossRef] [Google Scholar]
  25. V.A. Kopylow, The study of people’ motion parameters under forced egress situations. Ph.D. thesis, Moscow Civil Engineering Institute (1974). [Google Scholar]
  26. T. Kretz, A. Grünebohm, M. Kaufman, F. Mazur and M. Schreckenberg, Experimental study of pedestrian counterflow in a corridor. J. Statist. Mech. 2006 (2006) P10001. [CrossRef] [Google Scholar]
  27. S.N. Kruzhkov, First order quasilinear equations with several independent variables. Mat. Sb. 81 (1970) 228–255. [MathSciNet] [Google Scholar]
  28. R.J. LeVeque, Finite volume methods for hyperbolic problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002). [Google Scholar]
  29. M.J. Lighthill and G.B. Whitham, On Kinematic Waves. II. A Theory of Traffic Flow on Long Crowded Roads. Proc. Roy. Soc. London Ser. A 229 (1995) 317–345. [Google Scholar]
  30. D.R. Parisi and C.O. Dorso, Microscopic dynamics of pedestrian evacuation. Physica A 354 (2005) 606–618. [CrossRef] [Google Scholar]
  31. P.I. Richards, Shock waves on the highway. Oper. Res. 4 (1956) 42–51. [Google Scholar]
  32. M.D. Rosini, Nonclassical interactions portrait in a macroscopic pedestrian flow model. J. Differ. Eq. 246 (2009) 408–427. [CrossRef] [Google Scholar]
  33. M.D. Rosini, Macroscopic Models for Vehicular Flows and Crowd Dynamics: Theory and Applications. Springer, Heidelberg (2013). [Google Scholar]
  34. A. Schadschneider, W. Klingsch, H. Klüpfel and T. Kretz, C. Rogsch and A. Seyfried, Evacuation Dynamics: Empirical Results, Modeling and Applications. In Extreme Environmental Events, edited by R.A. Meyers. Springer (2011) 517–550. [Google Scholar]
  35. A. Seyfried, T. Rupprecht, A. Winkens, O. Passon, B. Steffen, W. Klingsch and M. Boltes, Capacity Estimation for Emergency Exits and Bottlenecks. In Interflam 2007 (2007) 247–258. [Google Scholar]
  36. S.A. Soria, R. Josens and D.R. Parisi, Experimental evidence of the “Faster is Slower” effect in the evacuation of ants. Safety Sci. 50 (2012) 1584–1588. [CrossRef] [Google Scholar]
  37. H.M. Zhang, A non-equilibrium traffic model devoid of gas-like behavior. Transport. Res. Part B 36 (2002) 275–290. [Google Scholar]
  38. X.L. Zhang, W.G. Weng, H.Y. Yuan and J.G. Chen, Empirical study of a unidirectional dense crowd during a real mass event. Physica. A 392 (2013) 2781–2791. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you