Free Access
Issue
ESAIM: M2AN
Volume 51, Number 5, September-October 2017
Page(s) 1561 - 1581
DOI https://doi.org/10.1051/m2an/2016075
Published online 27 September 2017
  1. R. Abraham, J.E. Marsden and T. Ratiu, Manifolds, tensor analysis, and applications. Vol. 75 of Appl. Math. Sci. Springer-Verlag, New York, 2nd edition (1988). [Google Scholar]
  2. C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21 (1998) 823–864. [CrossRef] [MathSciNet] [Google Scholar]
  3. J. Bonelle, Compatible Discrete Operator schemes on polyhedral meshes for elliptic and Stokes equations. Ph.D. thesis, Université Paris Est (2014). [Google Scholar]
  4. J. Bonelle, D. Di Pietro and A. Ern, Low-order reconstruction operators on polyhedral meshes: application to compatible discrete operator schemes. Comput. Aided Geom. Design 35/36 (2015) 27–41. [CrossRef] [Google Scholar]
  5. J. Bonelle and A. Ern, Analysis of compatible discrete operator schemes for elliptic problems on polyhedral meshes. ESAIM: M2AN 48 (2014) 553–581. [CrossRef] [EDP Sciences] [Google Scholar]
  6. J. Bonelle and A. Ern, Analysis of compatible discrete operator schemes for stokes problems on polyhedral meshes. IMA J. Numer. Anal. 34 (2014) 553–581. [CrossRef] [EDP Sciences] [Google Scholar]
  7. A. Bossavit, Extrusion, contraction: their discretization via Whitney forms. In Selected papers from: 10th International IGTE Symposium on Numerical Field Computation, Graz, 2002 . COMPEL 22 (2003) 470–480. [CrossRef] [MathSciNet] [Google Scholar]
  8. P. Cantin and A. Ern, Vertex-based compatible discrete operator schemes on polyhedral meshes for advection-diffusion equations. Comput. Meth. Appl. Math. 16 (2016) 187–212. [CrossRef] [Google Scholar]
  9. S.H. Christiansen, A construction of spaces of compatible differential forms on cellular complexes. Math. Models Methods Appl. Sci. 18 (2008) 739–757. [CrossRef] [MathSciNet] [Google Scholar]
  10. L. Codecasa, R. Specogna and F. Trevisan, A new set of basis functions for the discrete geometric approach. J. Comput. Phys. 229 (2010) 7401–7410. [CrossRef] [MathSciNet] [Google Scholar]
  11. P. Deuring, R. Eymard and M. Mildner, L2-stability independent of diffusion for a Finite Element-Finite Volume discretization of a linear convection-diffusion equation. SIAM J. Numer. Anal. 53 (2015) 508–526. [CrossRef] [MathSciNet] [Google Scholar]
  12. A. Devinatz, R. Ellis and A. Friedman. The asymptotic behavior of the first real eigenvalue of second order elliptic operators with a small parameter in the highest derivatives. II. Indiana Univ. Math. J. 23 (1973-1974) 991–1011. [CrossRef] [MathSciNet] [Google Scholar]
  13. A. Ern and J.-L. Guermond, Theory and practice of finite elements. Vol. 159 of Applied Mathematical Sciences. Springer-Verlag, New York (2004). [Google Scholar]
  14. A. Ern and J.-L. Guermond, Discontinuous Galerkin methods for Friedrichs’ systems. I. General theory. SIAM J. Numer. Anal. 44 (2006) 753–778. [CrossRef] [MathSciNet] [Google Scholar]
  15. A. Ern and J.-L. Guermond, Finite element quasi-interpolation and best approximation. ESAIM: M2AN 51 (2017) 1367–1385. [EDP Sciences] [Google Scholar]
  16. M. Gerritsma, An introduction to a compatible spectral discretization method. Mech. Adv. Mater. Struct. 19 (2012) 48–67. [CrossRef] [Google Scholar]
  17. V. Girault, The Navier-Stokes Equations Theory and Numerical Methods. In: Proc. of a Conference held at Oberwolfach, 1988. Springer Berlin Heidelberg (1990) 201–218. [Google Scholar]
  18. H. Heumann, Eulerian and Semi-Lagrangian Methods for Advection-Diffusion of Differential Forms. Ph.D. thesis, ETH Zürich (2011). [Google Scholar]
  19. H. Heumann, R. Hiptmair and C. Pagliantini, Stabilized Galerkin for Transient Advection of Differential Forms. Research report, SAM, ETH Zürich (2015). [Google Scholar]
  20. C. Johnson and J. Pitkäranta, An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math. Comput. 46 (1986) 1–26. [CrossRef] [MathSciNet] [Google Scholar]
  21. J. Kreeft, A. Palha and M. Gerritsma, Mimetic framework on curvilinear quadrilaterals of arbitrary order. Preprint arXiv:1111.4304 (2011). [Google Scholar]
  22. P. Lesaint and P.-A. Raviart, On a finite element method for solving the neutron transport equation. In Mathematical Aspects of Finite Elements in Partial Differential Equations. Academic Press (1974) 89–123 [Google Scholar]
  23. P. Mullen, A. McKenzie, D. Pavlov, L. Durant, Y. Tong, E. Kanso, J.E. Marsden and M. Desbrun, Discrete Lie advection of differential forms. Found. Comput. Math. 11 (2011) 131–149. [CrossRef] [MathSciNet] [Google Scholar]
  24. A. Palha, High order mimetic discretization. PhD thesis, Technische Universiteit Delft (2013). [Google Scholar]
  25. S. Zaglmayr, High Order Finite Element Methods for Electromagnetic Field Computation. Ph.D. thesis, Johannes Kepler University (2006). [Google Scholar]
  26. G.M. Ziegler, Lectures on polytopes. Graduate texts in mathematics. Springer, New York (1995). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you