Open Access
Issue
ESAIM: M2AN
Volume 53, Number 6, November-December 2019
Page(s) 1981 - 2024
DOI https://doi.org/10.1051/m2an/2019044
Published online 29 November 2019
  1. N. Aïssiouene, M.-O. Bristeau, E. Godlewski, A. Mangeney, C. Parés and J. Sainte-Marie, A two-dimensional method for a family of dispersive shallow water model. Working paper or Preprint (May 2019). [Google Scholar]
  2. ANGE Team, Freshkiss3D home page. Available at: http://freshkiss3D.gforge.inria.fr (2017). [Google Scholar]
  3. E. Audusse, A multilayer Saint-Venant model: derivation and numerical validation. Discrete Contin. Dyn. Syst. Ser. B 5 (2005) 189–214. [CrossRef] [MathSciNet] [Google Scholar]
  4. E. Audusse and M.-O. Bristeau, A well-balanced positivity preserving second-order scheme for Shallow Water flows on unstructured meshes. J. Comput. Phys. 206 (2005) 311–333. [Google Scholar]
  5. E. Audusse and M.-O. Bristeau, Finite-volume solvers for a multilayer Saint-Venant system. Int. J. Appl. Math. Comput. Sci. 17 (2007) 311–319. [CrossRef] [MathSciNet] [Google Scholar]
  6. E. Audusse, F. Bouchut, M.-O. Bristeau, R. Klein and B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for Shallow Water flows. SIAM J. Sci. Comput. 25 (2004) 2050–2065. [Google Scholar]
  7. E. Audusse, F. Bouchut, M.-O. Bristeau and J. Sainte-Marie, Kinetic entropy inequality and hydrostatic reconstruction scheme for the Saint-Venant system. Math. Comput. 85 (2016) 2815–2837. [Google Scholar]
  8. E. Audusse, M.-O. Bristeau and A. Decoene, Numerical simulations of 3D free surface flows by a multilayer Saint-Venant model. Int. J. Numer. Methods Fluids 56 (2008) 331–350. [Google Scholar]
  9. E. Audusse, M.-O. Bristeau, M. Pelanti and J. Sainte-Marie, Approximation of the hydrostatic Navier-Stokes system for density stratified flows by a multilayer model. Kinetic interpretation and numerical validation. J. Comput. Phys. 230 (2011) 3453–3478. [Google Scholar]
  10. E. Audusse, M.-O. Bristeau, B. Perthame and J. Sainte-Marie, A multilayer Saint-Venant system with mass exchanges for Shallow Water flows. Derivation and numerical validation. ESAIM: M2AN 45 (2011) 169–200. [CrossRef] [EDP Sciences] [Google Scholar]
  11. E. Audusse, M.-O. Bristeau and J. Sainte-Marie, Kinetic entropy for the layer-averaged hydrostatic Navier–Stokes equations. Working paper or Preprint (2017). [Google Scholar]
  12. A.-J.-C. Barré de Saint-Venant, Théorie du mouvement non permanent des eaux avec applications aux crues des rivières et à l’introduction des marées dans leur lit. C. R. Acad. Sci. Paris 73 (1871) 147–154. [Google Scholar]
  13. Bathymetry & Relief, NOAA home page. Available at: https://www.ngdc.noaa.gov/mgg/global/global.htmlhttps://www.ngdc.noaa.gov/mgg/global/global.html (2017). [Google Scholar]
  14. O. Bernard, A.-C. Boulanger, M.-O. Bristeau and J. Sainte-Marie, A 2D model for hydrodynamics and biology coupling applied to algae growth simulations. ESAIM: M2AN 47 (2013) 387–1412. [CrossRef] [EDP Sciences] [Google Scholar]
  15. F. Berthelin and F. Bouchut, Relaxation to isentropic gas dynamics for a BGK system with single kinetic entropy. Methods Appl. Anal. 9 (2002) 313–327. [Google Scholar]
  16. F. Bouchut, Construction of BGK models with a family of kinetic entropies for a given system of conservation laws. J. Stat. Phys. 95 (1999) 113–170. [Google Scholar]
  17. F. Bouchut, Entropy satisfying flux vector splittings and kinetic BGK models. Numer. Math. 94 (2003) 623–672. [Google Scholar]
  18. F. Bouchut, An introduction to finite volume methods for hyperbolic conservation laws. ESAIM Proc. 15 (2004) 107–127. [Google Scholar]
  19. F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources. Birkhäuser, Basel (2004). [CrossRef] [Google Scholar]
  20. F. Bouchut and T. Morales de Luna, An entropy satisfying scheme for two-layer shallow water equations with uncoupled treatment. M2AN 42 (2008) 683–698. [CrossRef] [EDP Sciences] [Google Scholar]
  21. F. Bouchut and M. Westdickenberg, Gravity driven shallow water models for arbitrary topography. Comm. Math. Sci. 2 (2004) 359–389. [CrossRef] [MathSciNet] [Google Scholar]
  22. F. Bouchut and V. Zeitlin, A robust well-balanced scheme for multi-layer shallow water equations. Discrete Contin. Dyn. Syst. Ser. B 13 (2010) 739–758. [CrossRef] [Google Scholar]
  23. A.-C. Boulanger and J. Sainte-Marie, Analytical solutions for the free surface hydrostatic Euler equations. Commun. Math. Sci. 11 (2013) 993–1010. [Google Scholar]
  24. Y. Brenier, Homogeneous hydrostatic flows with convex velocity profiles. Nonlinearity 12 (1999) 495–512. [Google Scholar]
  25. D. Bresch, A. Kazhikhov and J. Lemoine, On the two-dimensional hydrostatic Navier-Stokes equations. SIAM J. Math. Anal. 36 (2004/2005) 796–814. [CrossRef] [MathSciNet] [Google Scholar]
  26. M.-O. Bristeau and B. Coussin, Boundary Conditions for the Shallow Water Equations solved by Kinetic Schemes. Research Report RR-4282, INRIA (2001). [Google Scholar]
  27. M.-O. Bristeau, B. Di-Martino, C. Guichard and J. Sainte-Marie, Layer-averaged Euler and Navier-Stokes equations. Commun. Math. Sci. 15 (2017) 1221–1246. [Google Scholar]
  28. M.-O. Bristeau, B. Di-Martino, A. Mangeney, J. Sainte-Marie and F. Souillé, Various analytical solutions for the incompressible Euler and Navier-Stokes systems with free surface. Working paper or Preprint (2018). [Google Scholar]
  29. M.-O. Bristeau, A. Mangeney, J. Sainte-Marie and N. Seguin, An energy-consistent depth-averaged euler system: derivation and properties. Discrete Contin. Dyn. Syst. Ser. B 20 (2015) 961–988. [CrossRef] [Google Scholar]
  30. M.-J. Castro, J. Macas, C. Parés, A Q-scheme for a class of systems of coupled conservation laws with source term. Application to a two-layer 1-D shallow water system. M2AN 35 (2001) 107–127. [CrossRef] [EDP Sciences] [Google Scholar]
  31. M.-J. Castro, J.A. Garca-Rodrguez, J.M. González-Vida, J. Macas, C. Parés and M.E. Vázquez-Cendón, Numerical simulation of two-layer shallow water flows through channels with irregular geometry. J. Comput. Phys. 195 (2004) 202–235. [Google Scholar]
  32. V. Casulli, A semi-implicit numerical method for the free-surface Navier-Stokes equations. Int. J. Numer. Methods Fluids 74 (2014) 605–622. [Google Scholar]
  33. Clawpack Development Team. Clawpack Software. Available at: http://depts.washington.edu/clawpack/links/nthmp-benchmarks/monai-valley/index.html (2019). [Google Scholar]
  34. D. Demory, C. Combe, P. Hartmann, A. Talec, E. Pruvost, R. Hamouda, F. Souillé, P.-O. Lamare, M.-O. Bristeau, J. Sainte-Marie, S. Rabouille, F. Mairet, A. Sciandra and O. Bernard, How do microalgae perceive light in a high-rate pond? Towards more realistic Lagrangian experiments. R. Soc. Open Sci. 5 (2018) 180523. [CrossRef] [PubMed] [Google Scholar]
  35. E.D. Fernández-Nieto, G. Garres-Dìas, A. Mangeney and G. Narbona-Reina, A multilayer shallow model for dry granular flows with the u(I)-rheology: application to granular collapse on erodible beds. J. Fluid Mech. 798 (2016) 643–681. [Google Scholar]
  36. E.D. Fernández-Nieto, E.H. Koné and T. Chacón Rebollo, A multilayer method for the hydrostatic Navier-Stokes equations: a particular weak solution. J. Sci. Comput. 60 (2014) 408–437. [Google Scholar]
  37. E. Grenier, On the derivation of homogeneous hydrostatic equations. ESAIM: M2AN 33 (1999) 0965–970. [CrossRef] [EDP Sciences] [Google Scholar]
  38. A. Gusman, S. Murotani, K. Satake, M. Heidarzadeh, E. Gunawan, S. Watada and B. Schurr, Fault slip distribution of the 2014 iquique, Chile, earthquake estimated from ocean-wide tsunami waveforms and GPS data. Geophys. Res. Lett. 42 (2015) 1053–1060. [Google Scholar]
  39. J.-M. Hervouet, Hydrodynamics of Free Surface Flows: Modelling with the Finite Element Method. Wiley (2007) [CrossRef] [Google Scholar]
  40. P.-L. Lions, Mathematical Topics in Fluid Mechanics. In: Vol 1 of Incompressible Models. Oxford University Press, Oxford (1996). [Google Scholar]
  41. P.L.-F. Liu, H. Yeh and C. Synolakis, Advanced Numerical Models for Simulating Tsunami Waves and Runup. World Scientific Publishing Company 10 (2008). [Google Scholar]
  42. J. Macías, M.J. Castro, S. Ortega, C. Escalante and J.M. González-Vida, Performance benchmarking of tsunami-HySEA model for NTHMP’s inundation mapping activities. Pure Appl. Geophys. 174 (2017) 3147–3183. [CrossRef] [Google Scholar]
  43. N. Masmoudi and T. Wong, On the HS theory of hydrostatic Euler equations. Arch. Ration. Mech. Anal. 204 (2012) 231–271. [Google Scholar]
  44. National Tsunami Hazard Mitigation Program (NTHMP). Proceedings and Results of the 2011 NTHMP Model Benchmarking. Workshop NOAA Special Report. Department of Commerce/NOAA/NTHMP, Boulder(2012). [Google Scholar]
  45. Noaa Center for Tsunami Research. Monai valley. Available at: https://nctr.pmel.noaa.gov/benchmark/Laboratory/Laboratory_MonaiValley/ (2019). [Google Scholar]
  46. L.V. Ovsyannikov, Two-layer shallow water models. Prikl. Mekh. Tekh. Fiz. 2 (1979) 3–14. [Google Scholar]
  47. B. Perthame, Kinetic Formulation of Conservation Laws, Oxford University Press, Oxford (2002). [Google Scholar]
  48. B. Perthame and C. Simeoni, A kinetic scheme for the Saint-Venant system with a source term, Calcolo 38 (2001) 201–231. [CrossRef] [MathSciNet] [Google Scholar]
  49. J. Sainte-Marie, Vertically averaged models for the free surface Euler system. Derivation and kinetic interpretation, Math. Models Methods Appl. Sci. (M3AS) 21 (2011) 459–490. [CrossRef] [Google Scholar]
  50. W.C. Thacker, Some exact solutions to the non-linear shallow-water wave equations. J. Fluid Mech. 107 (1981) 499–508. [Google Scholar]
  51. M. Vallée, R. Grandin, S. Ruiz, B. Delouis, C. Vigny, E. Rivera, E. Aissaoui, S. Alleyer, Q. Bletery, C. Satriano, N. Poiata, P. Bernard, J.-P. Vilotte and B. Schurr, Complex rupture of an apparently simple asperity during the 2014/04/01 pisagua earthquake (northern chile, mw=8.1). In: Vol. 18 of EGU General Assembly Conference Abstracts. EGU2016-8660 (2016). [Google Scholar]
  52. B. Van Leer, Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. With an introduction by Ch. Hirsch, Commemoration of the 30th anniversary {of J. Comput. Phys.}. MR 1486274. J. Comput. Phys. 135 (1997) 227–248. [Google Scholar]
  53. C.B. Vreugdenhil, Two-layer shallow-water flow in two dimensions, a numerical study. J. Comput. Phys. 33 (1979) 169–184. [Google Scholar]
  54. S. Watada, S. Kusumoto and K. Satake, Traveltime delay and initial phase reversal of distant tsunamis coupled with the self-gravitating elastic earth. J. Geophys. Res.: Solid Earth 119 (2014) 4287–4310. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you