Free Access
Issue
ESAIM: M2AN
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S573 - S591
DOI https://doi.org/10.1051/m2an/2020049
Published online 26 February 2021
  1. S. Bianchini and A. Bressan, Vanishing viscosity solutions of nonlinear hyperbolic systems. Ann. Math. 161 (2005) 223–342. [Google Scholar]
  2. F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources. In: Frontiers in Mathematics. Birkhäuser Verlag, Basel (2004). [CrossRef] [Google Scholar]
  3. A. Bressan, Hyperbolic systems of conservation laws. In: Vol. 20 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford (2000). [Google Scholar]
  4. A. El Hajj, Well-posedness theory for a nonconservative Burgers-type system arising in dislocation dynamics. SIAM J. Math. Anal. 39 (2007) 965–986. [CrossRef] [Google Scholar]
  5. A. El Hajj and N. Forcadel, A convergent scheme for a non-local coupled system modelling dislocations densities dynamics. Math. Comput. 77 (2008) 789–812. [Google Scholar]
  6. A. El Hajj and R. Monneau, Uniqueness results for diagonal hyperbolic systems with large and monotone data. J. Hyperbolic Differ. Equ. 10 (2013) 461–494. [CrossRef] [Google Scholar]
  7. A. El Hajj and A. Oussaily, Existence and uniqueness of continuous solution for a non-local coupled system modeling the dynamics of dislocation densities. Submitted. [Google Scholar]
  8. A. El Hajj, H. Ibrahim and V. Rizik, Global BV solution for a non-local coupled system modeling the dynamics of dislocation densities. J. Differ. Equ. 264 (2018) 1750–1785. [Google Scholar]
  9. J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations. Comm. Pure Appl. Math. 18 (1965) 697–715. [CrossRef] [Google Scholar]
  10. I. Groma and P. Balogh, Investigation of dislocation pattern formation in a two-dimensional self-consistent field approximation. Acta Mater. 47 (1999) 3647–3654. [Google Scholar]
  11. E.R. Jakobsen and K.H. Karlsen, Convergence rates for semi-discrete splitting approximations for degenerate parabolic equations with source terms. BIT 45 (2005) 37–67. [CrossRef] [Google Scholar]
  12. E.R. Jakobsen, K.H. Karlsen and N.H. Risebro, On the convergence rate of operator splitting for Hamilton-Jacobi equations with source terms. SIAM J. Numer. Anal. 39 (2001) 499–518. [Google Scholar]
  13. P.D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves. Society for Industrial and Applied Mathematics, Philadelphia, PA (1973). [CrossRef] [Google Scholar]
  14. P. Lax and B. Wendroff, Systems of conservation laws. Comm. Pure Appl. Math. 13 (1960) 217–237. [CrossRef] [MathSciNet] [Google Scholar]
  15. R.J. LeVeque, Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge (2002). [Google Scholar]
  16. R.J. LeVeque and B. Temple, Stability of Godunov’s method for a class of 2×2 systems of conservation laws. Trans. Amer. Math. Soc. 288 (1985) 115–123. [Google Scholar]
  17. T.P. Liu, The deterministic version of the Glimm scheme. Comm. Math. Phys. 57 (1977) 135–148. [CrossRef] [Google Scholar]
  18. L. Monasse and R. Monneau, Gradient entropy estimate and convergence of a semi-explicit scheme for diagonal hyperbolic systems. SIAM J. Numer. Anal. 52 (2014) 2792–2814. [Google Scholar]
  19. B. Temple, Systems of conservation laws with coinciding shock and rarefaction cruves. Contemp. Math. 17 (1983) 143–151. [CrossRef] [Google Scholar]
  20. B. Temple, Systems of conservation laws with invariant submanifolds. Trans. Amer. Math. Soc. 280 (1983) 781–795. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you