Free Access
Issue |
ESAIM: M2AN
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
|
|
---|---|---|
Page(s) | S625 - S651 | |
DOI | https://doi.org/10.1051/m2an/2020055 | |
Published online | 26 February 2021 |
- E. Agullo, B. Bramas, O. Coulaud, E. Darve, M. Messner and T. Takahashi, Task-based FMM for multicore architectures. SIAM J. Sci. Comput. 36 (2014) C66–C93. [Google Scholar]
- A. Appel, An efficient program for many-body simulation. SIAM J. Sci. Stat. Comput. 6 (1985) 85–103. [CrossRef] [Google Scholar]
- J. Barnes and P. Hut, A hierarchical O (N log N) force-calculation algorithm. Nature 324 (1986) 446–449. [Google Scholar]
- K. Barros and E. Luijten, Dielectric effects in the self-assembly of binary colloidal aggregates. Phys. Rev. Lett. 113 (2014) 017801. [PubMed] [Google Scholar]
- K. Barros, D. Sinkovits and E. Luijten, Efficient and accurate simulation of dynamic dielectric objects. J. Chem. Phys. 140 (2014) 064903. [Google Scholar]
- P. Blanchard, B. Bramas, O. Coulaud, E. Darve, L. Dupuy, A. Etcheverry and G. Sylvand, ScalFMM: a generic parallel fast multipole library. In: SIAM Conference on Computational Science and Engineering, 2015. [Google Scholar]
- H. Boateng and R. Krasny, Comparison of treecodes for computing electrostatic potentials in charged particle systems with disjoint targets and sources. J. Comput. Chem. 34 (2013) 2159–2167. [PubMed] [Google Scholar]
- M. Brunner, J. Dobnikar, H.-H. von Grünberg and C. Bechinger, Direct measurement of three-body interactions amongst charged colloids. Phys. Rev. Lett. 92 (2004) 078301. [CrossRef] [PubMed] [Google Scholar]
- H. Cheng, L. Greengard and V. Rokhlin, A fast adaptive multipole algorithm in three dimensions. J. Comput. Phys. 155 (1999) 468–498. [Google Scholar]
- H. Clercx and G. Bossis, Many-body electrostatic interactions in electrorheological fluids. Phys. Rev. E 48 (1993) 2721. [Google Scholar]
- W. Dehnen, A very fast and momentum-conserving tree code. Astrophys. J. Lett. 536 (2000) L39. [Google Scholar]
- J. Dobnikar, Y. Chen, R. Rzehak and H.-H. von Grünberg, Many-body interactions in colloidal suspensions. J. Phys.: Condens. Matter 15 (2002) S263. [Google Scholar]
- G. Efstathiou, M. Davis, S. White and C. Frenk, Numerical techniques for large cosmological N-body simulations. Astrophys. J. Suppl. Ser. 57 (1985) 241–260. [Google Scholar]
- M. Eiermann and O. Ernst, Geometric aspects of the theory of Krylov subspace methods. Acta Numer. 10 (2001) 251–312. [Google Scholar]
- S. Eisenstat, H. Elman and M. Schultz, Variational iterative methods for nonsymmetric systems of linear equations. SIAM J. Numer. Anal. 20 (1983) 345–357. [Google Scholar]
- H. Elman, Iterative methods for large, sparse, nonsymmetric systems of linear equations, Ph.D. thesis, Yale University New Haven, CO (1982). [Google Scholar]
- B. Fischer, Polynomial Based Iteration Methods for Symmetric Linear Systems. In: Vol. 68 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia, PA (2011). [Google Scholar]
- K. Freed, Perturbative many-body expansion for electrostatic energy and field for system of polarizable charged spherical ions in a dielectric medium. J. Chem. Phys. 141 (2014) 034115. [Google Scholar]
- Z. Gan, S. Jiang, E. Luijten and Z. Xu, A hybrid method for systems of closely spaced dielectric spheres and ions. SIAM J. Sci. Comput. 38 (2016) B375–B395. [Google Scholar]
- W. Geng and R. Krasny, A treecode-accelerated boundary integral Poisson-Boltzmann solver for electrostatics of solvated biomolecules. J. Comput. Phys. 247 (2013) 62–78. [Google Scholar]
- A. Greenbaum, Iterative Methods for Solving Linear Systems. In: Vol. 17 of Frontiers in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia, PA (1997). [Google Scholar]
- L. Greengard, The rapid evaluation of potential fields in particle systems, ACM Distinguished Dissertations. MIT Press, Cambridge, MA (1988). [Google Scholar]
- L. Greengard, The numerical solution of the N-body problem. Comput. Phys. 4 (1990) 142–152. [Google Scholar]
- L. Greengard and V. Rokhlin, A fast algorithm for particle simulations. J. Comput. Phys. 73 (1987) 325–348. [Google Scholar]
- B. Grzybowski, A. Winkleman, J. Wiles, Y. Brumer and G. Whitesides, Electrostatic self-assembly of macroscopic crystals using contact electrification. Nat. Mater. 2 (2003) 241–245. [CrossRef] [PubMed] [Google Scholar]
- M. Hassan, Mathematical analysis of boundary integral equations and domain decomposition methods with applications in polarisable electrostatics. Ph.D. thesis. RWTH Aachen University (2020). [Google Scholar]
- M. Hassan and B. Stamm, An integral equation formulation of the N-body dielectric spheres problem. Part I: numerical analysis. ESAIM:M2AN (2020). https://doi.org/10.1051/m2an/2020030. [Google Scholar]
- M. Hassan and B. Stamm, A linear scaling in accuracy numerical method for computing the electrostatic forces in the N-body dielectric spheres problem. Commun. Comput. Phys. Preprint arXiv:2002.01579 (2020)). [Google Scholar]
- R. Hockney and J. Eastwood, Computer Simulation Using Particles. CRC Press (1988). [CrossRef] [Google Scholar]
- E. Jurrus, D. Engel, K. Star, K. Monson, J. Brandi, L.E. Felberg, D.H. Brookes, L. Wilson, J. Chen, K. Liles and M. Chun, Improvements to the APBS biomolecular solvation software suite. Protein Sci. 27 (2018) 112–128. [PubMed] [Google Scholar]
- A. Knebe, A. Green and J. Binney, Multi-level adaptive particle mesh (MLAPM): a c code for cosmological simulations. Mon. Not. R. Astron. Soc. 325 (2001) 845–864. [Google Scholar]
- P. Li, H. Johnston and R. Krasny, A Cartesian treecode for screened coulomb interactions. J. Comput. Phys. 228 (2009) 3858–3868. [Google Scholar]
- Y. Liang, N. Hilal, P. Langston and V. Starov, Interaction forces between colloidal particles in liquid: theory and experiment. Adv. Colloid Interface Sci. 134 (2007) 151–166. [PubMed] [Google Scholar]
- J. Liesen and P. Tichý, Convergence analysis of Krylov subspace methods. GAMM-Mitt. 27 (2004) 153–173. [Google Scholar]
- E. Lindgren, B. Stamm, H.-K. Chan, Y. Maday, A. Stace and E. Besley, The effect of like-charge attraction on aerosol growth in the atmosphere of Titan. Icarus 291 (2017) 245–253. [Google Scholar]
- E. Lindgren, A. Stace, E. Polack, Y. Maday, B. Stamm and E. Besley, An integral equation approach to calculate electrostatic interactions in many-body dielectric systems. J. Comput. Phys. 371 (2018) 712–731. [Google Scholar]
- E. Lindgren, B. Stamm, Y. Maday, E. Besley and A. Stace, Dynamic simulations of many-body electrostatic self-assembly. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 376 (2018) 20170143. [CrossRef] [Google Scholar]
- P. Linse, Electrostatics in the presence of spherical dielectric discontinuities. J. Chem. Phys. 128 (2008) 214505. [Google Scholar]
- I. Lotan and T. Head-Gordon, An analytical electrostatic model for salt screened interactions between multiple proteins. J. Chem. Theory Comput. 2 (2006) 541–555. [PubMed] [Google Scholar]
- L. McCarty, A. Winkleman and G. Whitesides, Electrostatic self-assembly of polystyrene microspheres by using chemically directed contact electrification. Angew. Chem. Int. Ed. 46 (2007) 206–209. [Google Scholar]
- J. Merrill, S. Sainis and E. Dufresne, Many-body electrostatic forces between colloidal particles at vanishing ionic strength. Phys. Rev. Lett. 103 (2009) 138301. [PubMed] [Google Scholar]
- R. Messina, Image charges in spherical geometry: application to colloidal systems. J. Chem. Phys. 117 (2002) 11062–11074. [Google Scholar]
- M. Messner, B. Bramas, O. Coulaud and E. Darve, Optimized M2L kernels for the Chebyshev interpolation based fast multipole method. Preprint arXiv:1210.7292(2012). [Google Scholar]
- N. Nachtigal, S. Reddy and L. Trefethen, How fast are nonsymmetric matrix iterations? SIAM J. Matrix Anal. App. 13 (1992) 778–795. [Google Scholar]
- H. Pohl, Giant polarization in high polymers. J. Electron. Mater. 15 (1986) 201–203. [Google Scholar]
- J. Qin, J. de Pablo and K. Freed, Image method for induced surface charge from many-body system of dielectric spheres. J. Chem. Phys. 145 (2016) 124903. [Google Scholar]
- J. Qin, J. Li, V. Lee, H. Jaeger, J. de Pablo and K. Freed, A theory of interactions between polarizable dielectric spheres. J. Colloid Interface Sci. 469 (2016) 237–241. [Google Scholar]
- Y. Saad, Krylov subspace methods for solving large unsymmetric linear systems. Math. Comput. 37 (1981) 105–126. [Google Scholar]
- Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd edition. Society for Industrial and Applied Mathematics, Philadelphia, PA (2003). [Google Scholar]
- Y. Saad and M. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7 (1986) 856–869. [Google Scholar]
- S. Sauter and C. Schwab, Boundary Element Methods. In: Vol. 39 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin-Heidelberg (2011). [CrossRef] [Google Scholar]
- E. Shevchenko, D. Talapin, N. Kotov, S. O’Brien and C. Murray, Structural diversity in binary nanoparticle superlattices. Nature 439 (2006) 55–59. [CrossRef] [PubMed] [Google Scholar]
- Z. Xu, Electrostatic interaction in the presence of dielectric interfaces and polarization-induced like-charge attraction. Phys. Rev. E 87 (2013) 013307. [Google Scholar]
- E.-H. Yap and T. Head-Gordon, Calculating the bimolecular rate of protein–protein association with interacting crowders. J. Chem. Theory Comput. 9 (2013) 2481–2489. [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.