Free Access
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S593 - S623
Published online 26 February 2021
  1. S. Asmussen and P.W. Glynn, Stochastic Simulation: Algorithms and Analysis. Springer, New York, NY (2007). [CrossRef] [Google Scholar]
  2. R. Assaraf, B. Jourdain, T. Lelièvre and R. Roux, Computation of sensitivities for the invariant measure of a parameter dependent diffusion. Stochastics Part. Differ. Equ.: Anal. Comput. 6 (2018) 125–183. [Google Scholar]
  3. V. Bally and D. Talay, The law of the Euler scheme for stochastic differential equations. I. Convergence rate of the distribution function. Probab. Theory Relat. Fields 104 (1996) 43–60. [Google Scholar]
  4. L.R. Bellet, Ergodic properties of Markov processes. In: Open Quantum Systems II. Springer, Berlin-Heidelberg (2006) 1–39. [Google Scholar]
  5. R.N. Bhattacharya, On the functional central limit theorem and the law of the iterated logarithm for Markov processes. Probab. Theory Relat. Fields 60 (1982) 185–201. [Google Scholar]
  6. J.-M. Bismut, Martingales, the Malliavin calculus and hypoellipticity under general Hörmander’s conditions. Z. Wahrsch. Verw. Gebiete 56 (1981) 469–505. [CrossRef] [Google Scholar]
  7. N. Bou-Rabee and M. Hairer, Nonasymptotic mixing of the MALA algorithm. IMA J. Numer. Anal. 33 (2013) 80–110. [CrossRef] [Google Scholar]
  8. D.J. Evans and G. Morriss, Statistical Mechanics of Nonequilibrium Liquids. Cambridge University Press (2008). [CrossRef] [Google Scholar]
  9. M. Fathi, A.-A. Homman and G. Stoltz, Error analysis of the transport properties of Metropolized schemes. ESAIM: Procs. 48 (2015) 341–363. [CrossRef] [Google Scholar]
  10. M. Fathi and G. Stoltz, Improving dynamical properties of metropolized discretizations of overdamped Langevin dynamics. Numer. Math. 136 (2017) 1–58. [Google Scholar]
  11. D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin-Heidelberg (2001). [Google Scholar]
  12. P. Glasserman. Monte Carlo Methods in Financial Engineering. In: Vol. 53 of Stochastic Modelling and Applied Probability. Springer, New York, NY (2013). [Google Scholar]
  13. P.W. Glynn, Likelihood ratio gradient estimation for stochastic systems. Commun. ACM 33 (1990) 75–84. [Google Scholar]
  14. P.W. Glynn and M. Olvera-Cravioto, Likelihood ratio gradient estimation for steady-state parameters. Stochastic Syst. 9 (2019) 83–181. [CrossRef] [Google Scholar]
  15. M. Hairer and J.C. Mattingly, Yet another look at Harris’ ergodic theorem for Markov chains. In: Seminar on Stochastic Analysis, Random Fields and Applications VI, Springer, Berlin-Heidelberg (2011) 109–117. [CrossRef] [Google Scholar]
  16. W. Kliemann, Recurrence and invariant measures for degenerate diffusions. Ann. Probab. 15 (1987) 690–707. [Google Scholar]
  17. P.E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations. Vol. 23 of Stochastic Modelling and Applied Probability. Springer, Berlin-Heidelberg 23 (2013). [Google Scholar]
  18. M. Kopec, Weak backward error analysis for Langevin process. BIT Numer. Math. 55 (2015) 1057–1103. [Google Scholar]
  19. B. Leimkuhler, C. Matthews and G. Stoltz, The computation of averages from equilibrium and nonequilibrium Langevin molecular dynamics. IMA J. Numer. Anal. 36 (2016) 13–79. [Google Scholar]
  20. T. Lelièvre and G. Stoltz, Partial differential equations and stochastic methods in molecular dynamics. Acta Numer. 25 (2016) 681–880. [CrossRef] [Google Scholar]
  21. J.C. Mattingly, A.M. Stuart and M.V. Tretyakov, Convergence of numerical time-averaging and stationary measures via Poisson equations. SIAM J. Numer. Anal. 48 (2010) 552–577. [Google Scholar]
  22. S.P. Meyn and R.L. Tweedie, Markov Chains and Stochastic Stability. Springer, London (2012). [Google Scholar]
  23. B. Øksendal, Stochastic Differential Equations: An Introduction with Applications. Springer, Berlin-Heidelberg (2013). [Google Scholar]
  24. P.E. Protter, Stochastic Integration and Differential Equations. Vol. 21 of Stochastic Modelling and Applied Probability. Springer, Berlin-Heidelberg (2005). [CrossRef] [Google Scholar]
  25. S. Redon, G. Stoltz and Z. Trstanova, Error analysis of modified Langevin dynamics. J. Stat. Phys. 164 (2016) 735–771. [Google Scholar]
  26. R.Y. Rubinstein and D.P. Kroese, Simulation and the Monte Carlo Method. Wiley Series in Probability and Statistics. John Wiley & Sons Inc., Hoboken, NJ (2017). [Google Scholar]
  27. D. Talay, Stochastic Hamiltonian systems: exponential convergence to the invariant measure, and discretization by the implicit Euler scheme. Markov Proc. Rel. Fields 8 (2002) 163–198. [Google Scholar]
  28. M. Tuckerman, Statistical Mechanics: Theory and Molecular Simulation. Oxford University Press (2010). [Google Scholar]
  29. T. Wang and P. Plecháč, Steady-state sensitivity analysis of continuous time Markov chains. SIAM J. Numer. Anal. 57 (2019) 192–217. [Google Scholar]
  30. T. Wang and M. Rathinam, Efficiency of the Girsanov transformation approach for parametric sensitivity analysis of stochastic chemical kinetics. SIAM/ASA J. Uncertainty Quant. 4 (2016) 1288–1322. [CrossRef] [Google Scholar]
  31. T. Wang and M. Rathinam, On the validity of the Girsanov transformation method for sensitivity analysis of stochastic chemical reaction networks. Preprint: arXiv:1807.09935 (2018). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you