Free Access
Issue
ESAIM: M2AN
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S969 - S991
DOI https://doi.org/10.1051/m2an/2020062
Published online 26 February 2021
  1. S. Acosta and C. Montalto, Multiwave imaging in an enclosure with variable wave speed. Inverse Prob. 31 (2015) 065009. [Google Scholar]
  2. D. Auroux and J. Blum, Back and forth nudging algorithm for data assimilation problems. C. R. Math. Acad. Sci. Paris 340 (2005) 873–878. [Google Scholar]
  3. C. Bardos, G. Lebeau and J. Rauch, Un exemple d’utilisation des notions de propagation pour le contrôle et la stabilisation de problèmes hyperboliques. Rend. Sem. Mat. Univ. Politec. Torino (Special Issue) (1988) 11–31. [Google Scholar]
  4. C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. 30 (1992) 1024–1065. [Google Scholar]
  5. M. Bernadou and K. Hassan, Basis functions for general Hsieh–Clough–Tocher triangles, complete or reduced. Int. J. Numer. Methods Eng. 17 (1981) 784–789. [Google Scholar]
  6. L. Bourgeois, D. Ponomarev and J. Dardé, An inverse obstacle problem for the wave equation in a finite time domain. Inverse Prob. Imaging 13 (2019) 377–400. [Google Scholar]
  7. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, Vol. 15 of Texts in Applied Mathematics, 3rd edition. Springer, New York (2008). [CrossRef] [Google Scholar]
  8. E. Burman, Stabilized finite element methods for nonsymmetric, noncoercive, and ill-posed problems. Part I: elliptic equations. SIAM J. Sci. Comput. 35 (2013) A2752–A2780. [Google Scholar]
  9. E. Burman, Error estimates for stabilized finite element methods applied to ill-posed problems. C. R. Math. Acad. Sci. Paris 352 (2014) 655–659. [CrossRef] [Google Scholar]
  10. E. Burman, A stabilized nonconforming finite element method for the elliptic Cauchy problem. Math. Comput. 86 (2017) 75–96. [Google Scholar]
  11. E. Burman and L. Oksanen, Data assimilation for the heat equation using stabilized finite element methods. Numer. Math. 139 (2018) 505–528. [Google Scholar]
  12. E. Burman, J. Ish-Horowicz and L. Oksanen, Fully discrete finite element data assimilation method for the heat equation. ESAIM: M2AN 52 (2018) 2065–2082. [EDP Sciences] [Google Scholar]
  13. E. Burman, A. Feizmohammadi and L. Oksanen, A fully discrete numerical control method for the wave equation. SIAM J. Control Optim.. Preprint arXiv:1903.02320 (2019). [Google Scholar]
  14. E. Burman, A. Feizmohammadi and L. Oksanen, A finite element data assimilation method for the wave equation. Math. Comput. 89 (2020) 1681–1709. [Google Scholar]
  15. C. Castro, N. Cndea and A. Münch, Controllability of the linear one-dimensional wave equation with inner moving forces. SIAM J. Control Optim. 52 (2014) 4027–4056. [Google Scholar]
  16. O. Chervova and L. Oksanen, Time reversal method with stabilizing boundary conditions for photoacoustic tomography., Inverse Prob. 32 (2016) 125004. [Google Scholar]
  17. N. Cîndea and A. Münch, Inverse problems for linear hyperbolic equations using mixed formulations. Inverse Prob. 31 (2015) 075001. [Google Scholar]
  18. N. Cîndea and A. Münch, A mixed formulation for the direct approximation of the control of minimal L2-norm for linear type wave equations. Calcolo 52 (2015) 245–288. [CrossRef] [Google Scholar]
  19. C. Clason and M.V. Klibanov, The quasi-reversibility method for thermoacoustic tomography in a heterogeneous medium. SIAM J. Sci. Comput. 30 (2007/2008) 1–23. [Google Scholar]
  20. R. Codina, Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods. Comput. Methods Appl. Mech. Eng. 190 (2000) 1579–1599. [Google Scholar]
  21. G. Engel, K. Garikipati, T.J.R. Hughes, M.G. Larson, L. Mazzei and R.L. Taylor, Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. Comput. Methods Appl. Mech. Eng. 191 (2002) 3669–3750. [Google Scholar]
  22. A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements. In: Vol. 159 of Applied Mathematical Sciences. Springer, New York (2004). [CrossRef] [Google Scholar]
  23. J. Ernesti and C. Wieners, Space-time discontinuous Petrov-Galerkin methods for linear wave equations in heterogeneous media. Comput. Methods Appl. Math. 19 (2019) 465–481. [Google Scholar]
  24. S. Ervedoza and E. Zuazua, The wave equation: control and numerics. In: Vol. 2048 of Lecture Notes in Mathematics. Control of Partial Differential Equations. Berlin-Heidelberg, Springer (2012) 245–339. [Google Scholar]
  25. S. Ervedoza and E. Zuazua, Numerical Approximation of Exact Controls for Waves. Springer Briefs in Mathematics. Springer, New York (2013). [CrossRef] [Google Scholar]
  26. S. Ervedoza, A. Marica and E. Zuazua, Numerical meshes ensuring uniform observability of one-dimensional waves: construction and analysis. IMA J. Numer. Anal. 36 (2016) 503–542. [Google Scholar]
  27. R. Glowinski and J.-L. Lions, Exact and Approximate Controllability for Distributed Parameter Systems. In: Acta Numerica. Cambridge University Press, Cambridge (1994) 269–378. [Google Scholar]
  28. G. Haine and K. Ramdani, Reconstructing initial data using observers: error analysis of the semi-discrete and fully discrete approximations. Numer. Math. 120 (2012) 307–343. [Google Scholar]
  29. F. Hecht, New development in Freefem++. J. Numer. Math. 20 (2012) 251–265. [CrossRef] [MathSciNet] [Google Scholar]
  30. J.A. Infante and E. Zuazua, Boundary observability for the space semi-discretizations of the 1-D wave equation. M2AN 33 (1999) 407–438. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  31. M.V. Klibanov and J. Malinsky, Newton-Kantorovich method for three-dimensional potential inverse scattering problem and stability of the hyperbolic Cauchy problem with time-dependent data. Inverse Prob. 7 (1991) 577–596. [Google Scholar]
  32. M. Klibanov and Rakesh, Numerical solution of a time-like Cauchy problem for the wave equation. Math. Methods Appl. Sci. 15 (1992) 559–570. [Google Scholar]
  33. P. Kuchment and L. Kunyansky, Mathematics of thermoacoustic tomography. Eur. J. Appl. Math. 19 (2008) 191–224. [Google Scholar]
  34. R. Lattès and J.-L. Lions, Méthode de quasi-réversibilité et applications. In: Vol. 15 of Travaux et Recherches Mathématiques. Dunod, Paris (1967). [Google Scholar]
  35. J. Le Rousseau, G. Lebeau, P. Terpolilli and E. Trélat, Geometric control condition for the wave equation with a time-dependent observation domain. Anal. PDE 10 (2017) 983–1015. [Google Scholar]
  36. L. Miller, Resolvent conditions for the control of unitary groups and their approximations. J. Spectr. Theory 2 (2012) 1–55. [CrossRef] [Google Scholar]
  37. S. Montaner and A. Münch, Approximation of controls for linear wave equations: a first order mixed formulation. Math. Control Relat. Fields 9 (2019) 729–758. [Google Scholar]
  38. A. Münch, A uniformly controllable and implicit scheme for the 1-D wave equation. M2AN 39 (2005) 377–418. [CrossRef] [EDP Sciences] [Google Scholar]
  39. L.V. Nguyen and L.A. Kunyansky, A dissipative time reversal technique for photoacoustic tomography in a cavity. SIAM J. Imaging Sci. 9 (2016) 748–769. [Google Scholar]
  40. J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. [Collection of articles dedicated to Lothar Collatz on his sixtieth birthday]. Abh. Math. Sem. Univ. Hamburg 36 (1971) 9–15. [Google Scholar]
  41. K. Ramdani, M. Tucsnak and G. Weiss, Recovering and initial state of an infinite-dimensional system using observers. Automatica J. IFAC 46 (2010) 1616–1625. [Google Scholar]
  42. L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions., Math. Comput. 54 (1990) 483–493. [Google Scholar]
  43. P. Stefanov and G. Uhlmann, Thermoacoustic tomography with variable sound speed. Inverse Prob. 25 (2009) 075011. [Google Scholar]
  44. P. Stefanov and Y. Yang, Multiwave tomography in a closed domain: averaged sharp time reversal. Inverse Prob. 31 (2015) 065007. [Google Scholar]
  45. O. Steinnach and M. Zank, A stabilized space-time finite element method for the wave equation. Technische Universität Graz Report 2018/5 (2018) 1–27. [Google Scholar]
  46. V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. In: Vol. 25 of Springer Series in Computational Mathematics. Springer, Berlin-Heidelberg (1997). [CrossRef] [Google Scholar]
  47. L.V. Wang, Photoacoustic Imaging and Spectroscopy. CRC Press (2009). [Google Scholar]
  48. E. Zuazua, Propagation, observation, and control of waves approximated by finite difference methods. SIAM Rev. 47 (2005) 197–243. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you