Free Access
Issue
ESAIM: M2AN
Volume 55, Number 1, January-February 2021
Page(s) 209 - 227
DOI https://doi.org/10.1051/m2an/2020078
Published online 18 February 2021
  1. R.A. Adams, Sobolev Spaces. Academic Press, New York (1975). [Google Scholar]
  2. W. Bao and Y. Cai, Mathematical theory and numerical methods for Bose-Einstein condensation. Kinet. Relat. Mod. 6 (2013) 1–135. [Google Scholar]
  3. A.D. Becke, Perspective: fifty years of density-functional theory in chemical physics. J. Chem. Phys. 140 (2014) 18A301. [Google Scholar]
  4. A. Bonito and A. Demlow, Convergence and optimality of higher-order adaptive finite element methods for eigenvalue clusters. SIAM J. Numer. Anal. 54 (2016) 2379–2388. [Google Scholar]
  5. C. Canuto, Adaptive hp-FEM for eigenvalue computations. Calcolo 56 (2019) 39. [Google Scholar]
  6. J.M. Cascon, C. Kreuzer, R.H. Nochetto and K.G. Siebert, Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46 (2008) 2524–2550. [Google Scholar]
  7. H. Chen, X. Gong, L. He and A. Zhou, Adaptive finite element approximations for a class of nonlinear eigenvalue problems in quantum physics. Adv. Appl. Math. Mech. 3 (2011) 493–518. [Google Scholar]
  8. H. Chen, L. He and A. Zhou, Finite element approximations of nonlinear eigenvalue problems in quantum physics. Comput. Methods Appl. Mech. Eng. 200 (2011) 1846–1865. [Google Scholar]
  9. H. Chen, X. Gong, L. He, Z. Yang and A. Zhou, Numerical analysis of finite dimensional approximations of Khon-Sham models. Adv. Comput. Math. 38 (2013) 225–256. [Google Scholar]
  10. H. Chen, X. Dai, X. Gong, L. He and A. Zhou, Adaptive finite element approximations for Kohn-Sham models. Multiscale Model. Simul. 12 (2014) 1828–1869. [Google Scholar]
  11. X. Dai, J. Xu and A. Zhou, Convergence and optimal complexity of adaptive finite element eigenvalue computations. Numer. Math. 110 (2008) 313–355. [Google Scholar]
  12. X. Dai, L. He and A. Zhou, Convergence and quasi-optimal complexity of adaptive finite element computations for multiple eigenvalues. IMA J. Numer. Anal. 35 (2015) 1934–1977. [Google Scholar]
  13. D. Davydov, T.D. Young and P. Steinmann, On the adaptive finite element analysis of the Kohn-Sham equations: methods, algorithms, and implementation. Int. J. Numerc. Methods Eng. 106 (2016) 863–888. [Google Scholar]
  14. E.M. Garau, P. Morin and C. Zuppa, Convergence of adaptive finite element methods for eigenvalue problems. Math. Models Methods Appl. Sci. 19 (2009) 721–747. [Google Scholar]
  15. D. Gallistl, An optimal adaptive FEM for eigenvalue clusters. Numer. Math. 130 (2015) 467–496. [Google Scholar]
  16. S. Giani and I.G. Graham, A convergent adaptive method for elliptic eigenvalue problems. SIAM J. Numer. Anal. 47 (2009) 1067–1091. [Google Scholar]
  17. X. Gong, L. Shen, D. Zhang and A. Zhou, Finite element approximations for Schrödinger equations with applications to electronic structure computations. J. Comput. Math. 23 (2008) 310–327. [Google Scholar]
  18. R. Harrison, I. Moroz and K.P. Tod, A numerical study of the Schrödinger-Newton equations. Nonlinearity 16 (2003) 101–122. [Google Scholar]
  19. D. Jerison and C.E. Kenig, Unique continuation and absence of positive eigenvalues for Schrödinger operators. Ann. Math. 121 (1985) 463–494. [Google Scholar]
  20. C. Le Bris, ed., Handbook of Numerical Analysis. In: Vol. X of Special issue: Computational Chemistry. North-Holland (2003). [Google Scholar]
  21. E.H. Lieb, Thomas-Fermi and related theories of atoms and molecules. Rev. Mod. Phys. 53 (1981) 603–641. [Google Scholar]
  22. R.M. Martin, Electronic Structure: Basic Theory and Practical Method. Cambridge University Press, Cambridge (2004). [Google Scholar]
  23. V. Maz’ya and J. Rossmann, Elliptic Equations in Polyhedral Domains. American Mathematical Society, Providence, RI (2010). [Google Scholar]
  24. P. Motamarri, M.R. Nowak, K. Leiter, J. Knap and V. Gavini, Higher-order adaptive finite-element methods for Kohn-Sham density functional theory. J. Comput. Phys. 253 (2013) 308–343. [Google Scholar]
  25. R. Penrose, On gravity’s role in quantum state reduction. Gen. Rel. Grav. 28 (1996) 581–600. [Google Scholar]
  26. J.P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23 (1981) 5048–5079. [Google Scholar]
  27. P. Pesic, Abel’s Proof: An Essay on the Sources and Meaning of Mathematical Unsolvability. MIT Press, Cambridge etc (2004). [Google Scholar]
  28. M. Reed and B. Simon, Methods of Modern Mathematical Physics-IV: Analysis of Operators. Academic Press, San Diego (1978). [Google Scholar]
  29. M. Schechter and B. Simon, Unique continuation for Schrödinger operators with unbounded potentials. J. Math. Anal. Appl. 77 (1980) 482–492. [Google Scholar]
  30. J.C. Slater, A simplification of the Hartree-Fock method. Phys. Rev. 81 (1951) 385–390. [Google Scholar]
  31. E. Tsuchida and M. Tsukada, Adaptive finite-element method for electronic-structure calculations. Phys. Rev. B 54 (1996) 7602–7605. [Google Scholar]
  32. S.H. Vosko, L. Wilk and M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 58 (1980) 1200–1211. [Google Scholar]
  33. H. Wolff, Recent work on sharp estimates in second-order elliptic unique continuation problems. J. Gome. Anal. 3 (1993) 621–650. [Google Scholar]
  34. X. Zhang and A. Zhou, A singularity-based eigenfunction decomposition for Kohn-Sham equations. Sci. Sin. Math. 59 (2016) 1623–1634. [Google Scholar]
  35. A. Zhou, An analysis of finite-dimensional approximations for the ground state solution of Bose-Einstein condensates. Nonlinearity 17 (2004) 541–550. [Google Scholar]
  36. A. Zhou, Hohenberg-Kohn theorem for Coulomb type systems and its generalization. J. Math. Chem. 50 (2012) 2746–2754. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you