Free Access
Volume 55, Number 1, January-February 2021
Page(s) 77 - 97
Published online 18 February 2021
  1. M. Al Hasan and M.J. Zaki, A survey of link prediction in social networks. In: Social Network Data Analytics. Springer, Boston (2011) 243–275. [Google Scholar]
  2. F. Arrigo, P. Grindrod, D.J. Higham and V. Noferini, Non-backtracking walk centrality for directed networks. J. Complex Networks 6 (2017) 54–78. [Google Scholar]
  3. F. Arrigo, D.J. Higham and F. Tudisco, A framework for second order eigenvector centralities and clustering coefficients. Proc. R. Soc. A 476 (2020) 20190724. [Google Scholar]
  4. A.R. Benson, Three hypergraph eigenvector centralities. SIAM J. Math. Data Sci. 1 (2019) 293–312. [Google Scholar]
  5. A.R. Benson, D.F. Gleich and J. Leskovec, Higher-order organization of complex networks. Science 353 (2016) 163–166. [Google Scholar]
  6. A.R. Benson, D.F. Gleich and L.-H. Lim, The spacey random walk: a stochastic process for higher-order data. SIAM Rev. 59 (2017) 321–345. [Google Scholar]
  7. M. Benzi and C. Klymko, Total communicability as a centrality measure. J. Complex Networks 1 (2013) 124–149. [Google Scholar]
  8. A. Berman and R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences. In: Vol. 9 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1994). [Google Scholar]
  9. C. Brezinski and M. Redivo-Zaglia, The PageRank vector: properties, computation, approximation, and acceleration. SIAM J. Matrix Anal. Appl. 28 (2006) 551–575. [Google Scholar]
  10. A. Cardillo, J. Gómez-Gardeñes, M. Zanin, M. Romance, D. Papo, F. Del Pozo and S. Boccaletti, Emergence of network features from multiplexity. Sci. Rep. 3 (2013) 1344. [CrossRef] [PubMed] [Google Scholar]
  11. T.-H.H. Chan, A. Louis, Z.G. Tang and C. Zhang, Spectral properties of hypergraph Laplacian and approximation algorithms. J. ACM 65 (2018) 1–48. [Google Scholar]
  12. P. Chebotarev, A class of graph-geodetic distances generalizing the shortest-path and the resistance distances. Disc. Appl. Math. 159 (2011) 295–302. [Google Scholar]
  13. P. Chebotarev, The graph bottleneck identity. Adv. Appl. Math. 47 (2011) 403–413. [Google Scholar]
  14. G.E. Cho and C.D. Meyer, Comparison of perturbation bounds for the stationary distribution of a Markov chain. Linear Algebra App. 335 (2001) 137–150. [Google Scholar]
  15. S. Cipolla, C. Di Fiore and F. Tudisco, Euler-Richardson method preconditioned by weakly stochastic matrix algebras: a potential contribution to Pagerank computation. Electron. J. Linear Algebra 32 (2017) 254–272. [Google Scholar]
  16. S. Cipolla, M. Redivo-Zaglia and F. Tudisco, Extrapolation methods for fixed-point multilinear PageRank computations. Numer. Linear Algebra App. 27 (2020) e2280. [Google Scholar]
  17. S. Cipolla, M. Redivo-Zaglia and F. Tudisco, Shifted and extrapolated power methods for tensor ℓp-eigenpairs. Electron. Trans. Numer. Anal. 53 (2020) 1–27. [Google Scholar]
  18. R. Cohen and S. Havlin, Complex Networks: Structure, Robustness and Function. Cambridge University Press (2010). [CrossRef] [Google Scholar]
  19. T.A. Davis and Y. Hu, The University of Florida sparse matrix collection. ACM Trans. Math. Softw. 38 (2011) 1–25. [Google Scholar]
  20. M. De Domenico, A. Solé-Ribalta, S. Gómez and A. Arenas, Navigability of interconnected networks under random failures. Proc. Natl. Acad. Sci. 111 (2014) 8351–8356. [Google Scholar]
  21. G.M. Del Corso, A. Gulli and F. Romani, Fast PageRank computation via a sparse linear system. Internet Math. 2 (2005) 251–273. [Google Scholar]
  22. S. Derrible, Network centrality of metro systems. PloS one 7 (2012) e40575. [Google Scholar]
  23. I.S. Duff, R.G. Grimes and J.G. Lewis, Sparse matrix test problems. ACM Trans. Math. Softw. 15 (1989) 1–14. [Google Scholar]
  24. E. Estrada, Path Laplacian matrices: introduction and application to the analysis of consensus in networks. Linear Algebra App. 436 (2012) 3373–3391. [Google Scholar]
  25. E. Estrada, The Structure of Complex Networks: Theory and Applications. Oxford University Press (2012). [Google Scholar]
  26. E. Estrada, J.-C. Delvenne, N. Hatano, J.L. Mateos, R. Metzler, A.P. Riascos and M.T. Schaub, Random multi-hopper model: super-fast random walks on graphs. J. Complex Networks 6 (2017) 382–403. [Google Scholar]
  27. E. Estrada, E. Hameed, N. Hatano and M. Langer, Path Laplacian operators and superdiffusive processes on graphs. I. One-dimensional case. Linear Algebra App. 523 (2017) 307–334. [Google Scholar]
  28. E. Estrada, E. Hameed, M. Langer and A. Puchalska, Path Laplacian operators and superdiffusive processes on graphs. II. Two-dimensional lattice. Linear Algebra App. 555 (2018) 373–397. [Google Scholar]
  29. R. Fagin, R. Kumar and D. Sivakumar, Comparing top k lists. SIAM J. Disc. Math. 17 (2003) 134–160. [Google Scholar]
  30. D. Fasino and F. Tudisco, A modularity based spectral method for simultaneous community and anti-community detection. Linear Algebra App. 542 (2018) 605–623. [Google Scholar]
  31. D. Fasino and F. Tudisco, Ergodicity coefficients for higher-order stochastic processes. SIAM J. Math. Data Sci. 2 (2020) 740–769. [Google Scholar]
  32. R.W. Floyd, Algorithm 97: shortest path. Commun. ACM 5 (1962) 345. [Google Scholar]
  33. M. Girvan and M.E. Newman, Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99 (2002) 7821–7826. [Google Scholar]
  34. G.H. Golub and C. Greif, An Arnoldi-type algorithm for computing PageRank. BIT Numer. Math. 46 (2006) 759–771. [Google Scholar]
  35. D.J. Higham, A matrix perturbation view of the small world phenomenon. SIAM Rev. 49 (2007) 91–108. [Google Scholar]
  36. M. Holtgrewe, P. Sanders and C. Schulz, Engineering a scalable high quality graph partitioner. In: 2010 IEEE International Symposium on Parallel Distributed Processing (IPDPS) 2010 1–12. [Google Scholar]
  37. D.B. Johnson, Efficient algorithms for shortest paths in sparse networks. J. ACM 24 (1977) 1–13. [Google Scholar]
  38. S. Kirkland, On a question concerning condition numbers for Markov chains. SIAM J. Matrix Anal. App. 23 (2002) 1109–1119. [Google Scholar]
  39. G. Li, S.D.S. Reis, A.A. Moreira, S. Havlin, H.E. Stanley and J.S. Andrade, Towards design principles for optimal transport networks. Phys. Rev. Lett. 104 (2010) 018701. [CrossRef] [PubMed] [Google Scholar]
  40. P. Li, I. Chien and O. Milenkovic, Optimizing generalized pagerank methods for seed-expansion community detection, edited by H. Wallach, H. Larochelle, A. Beygelzimer, F. D’Alché Buc, E. Fox and R. Garnett. In: Vol. 32 of Advances in Neural Information Processing Systems. Curran Associates, Inc. (2019) 11710–11721. [Google Scholar]
  41. D. Liben-Nowell and J. Kleinberg, The link-prediction problem for social networks. J. Am. Soc. Inf. Sci. Technol. 58 (2007) 1019–1031. [Google Scholar]
  42. X. Liu, G. Strang and S. Ott, Localized eigenvectors from widely spaced matrix modifications. SIAM J. Disc. Math. 16 (2003) 479–498. [Google Scholar]
  43. T. Martin, X. Zhang and M.E.J. Newman, Localization and centrality in networks. Phys. Rev. E 90 (2014) 052808. [Google Scholar]
  44. S. Massei, M. Mazza and L. Robol, Fast solvers for two-dimensional fractional diffusion equations using rank structured matrices. SIAM J. Sci. Comput. 41 (2019) A2627–A2656. [Google Scholar]
  45. M. Neumann and J. Xu, Improved bounds for a condition number for Markov chains. Linear Algebra App. 386 (2004) 225–241. [Google Scholar]
  46. M.E.J. Newman, Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74 (2006) 036104. [Google Scholar]
  47. Office of Railand Road. Estimate of London’s tube station usage. [Google Scholar]
  48. L. Page, S. Brin, R. Motwani and T. Winograd, The PageRank citation ranking: bringing order to the web. Technical report, Stanford InfoLab (1999). [Google Scholar]
  49. M. Paton, K. Akartunali and D.J. Higham, Centrality analysis for modified lattices. SIAM J. Matrix Anal. App. 38 (2017) 1055–1073. [Google Scholar]
  50. S. Pozza and F. Tudisco, On the stability of network indices defined by means of matrix functions. SIAM J. Matrix Anal. App. 39 (2018) 1521–1546. [Google Scholar]
  51. A.P. Riascos and J.L. Mateos, Long-range navigation on complex networks using Lévy random walks. Phys. Rev. E 86 (2012) 056110. [Google Scholar]
  52. M.R. Roberson and D. ben Avraham, Kleinberg navigation in fractal small-world networks. Phys. Rev. E 74 (2006) 017101. [Google Scholar]
  53. M.P. Rombach, M.A. Porter, J.H. Fowler and P.J. Mucha, Core-periphery structure in networks. SIAM J. Appl. Math. 74 (2014) 167–190. [Google Scholar]
  54. R.A. Rossi and N.K. Ahmed, The network data repository with interactive graph analytics and visualization. AAAI (2015). [Google Scholar]
  55. E. Seneta, Perturbation of the stationary distribution measured by ergodicity coefficients. Adv. Appl. Probab. 20 (1988) 228–230. [Google Scholar]
  56. K.J. Sharkey, Localization of eigenvector centrality in networks with a cut vertex. Phys. Rev. E 99 (2019) 012315. [PubMed] [Google Scholar]
  57. B. Stabler, H. Bar-Gera and E. Sall, Transportation networks for research. [Google Scholar]
  58. W.M. To, Centrality of an urban rail system. Urban Rail Transit 1 (2015) 249–256. [Google Scholar]
  59. F. Tudisco, A note on certain ergodicity coeflcients. Spec. Matrices 3 (2015). [Google Scholar]
  60. F. Tudisco and D.J. Higham, A nonlinear spectral method for core–periphery detection in networks. SIAM J. Math. Data Sci. 1 (2019) 269–292. [Google Scholar]
  61. A. van Heukelum, G. Barkema and R. Bisseling, DNA electrophoresis studied with the cage model. J. Comput. Phys. 180 (2002) 313–326. [Google Scholar]
  62. S. Warshall, A theorem on boolean matrices. J. ACM 9 (1962) 11–12. [Google Scholar]
  63. T. Weng, M. Small, J. Zhang and P. Hui, Lévy walk navigation in complex networks: a distinct relation between optimal transport exponent and network dimension. Sci. Rep. 5 (2015) 1–9. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you