Free Access
Volume 55, Number 1, January-February 2021
Page(s) 57 - 76
Published online 18 February 2021
  1. C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21 (1998) 823–864. [Google Scholar]
  2. D.N. Arnold, R.S. Falk and R. Winther, Finite element exterior calculus: from Hodge theory to numerical stability. Bull. Amer. Math. Soc. (N.S.) 47 (2010) 281–354. [CrossRef] [MathSciNet] [Google Scholar]
  3. I. Babuška and J. Osborn, Eigenvalue problems. In: Vol. 2 of Finite Element Methods (Part 1), Handbook of Numerical Analysis. Elsevier (1991) 641–787. [Google Scholar]
  4. J.M. Ball, Y. Capdeboscq and B. Tsering-Xiao, On uniqueness for time harmonic anisotropic Maxwell’s equations with piecewise regular coefficients. Math. Models Methods Appl. Sci. 22 (2012) 1250036. [Google Scholar]
  5. D. Boffi, Finite element approximation of eigenvalue problems. Acta Numer. 19 (2010) 1–120. [CrossRef] [MathSciNet] [Google Scholar]
  6. A.-S. Bonnet-BenDhia, P. Ciarlet and C.M. Zwölf, Time harmonic wave diffraction problems in materials with sign-shifting coefficients. J. Comput. Appl. Math. 234 (2010) 1912–1919. [Google Scholar]
  7. A. Buffa, Remarks on the discretization of some noncoercive operator with applications to heterogeneous maxwell equations. SIAM J. Numer. Anal. 43 (2005) 1–18. [Google Scholar]
  8. A. Buffa, M. Costabel and D. Sheen, On traces for H(curl, Ω) in Lipschitz domains. J. Math. Anal. Appl. 276 (2002) 845–867. [Google Scholar]
  9. F. Cakoni and D. Colton, Qualitative methods in inverse scattering theory. In: An introduction: Interaction of Mechanics and Mathematics. Springer-Verlag, Berlin-Heidelberg (2006). [Google Scholar]
  10. F. Cakoni, D. Colton, S. Meng and P. Monk, Stekloff eigenvalues in inverse scattering. SIAM J. Appl. Math. 76 (2016) 1737–1763. [Google Scholar]
  11. F. Cakoni, D. Colton and H. Haddar, Inverse scattering theory and transmission eigenvalues. In: Vol. 88 of CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2016). [Google Scholar]
  12. J. Camaño, C. Lackner and P. Monk, Electromagnetic Stekloff eigenvalues in inverse scattering. SIAM J. Math. Anal. 49 (2017) 4376–4401. [Google Scholar]
  13. M. Costabel, A remark on the regularity of solutions of Maxwell’s equations on Lipschitz domains. Math. Methods Appl. Sci. 12 (1990) 365–368. [Google Scholar]
  14. M. Dauge, Elliptic boundary value problems on corner domains. In: Vol. 1341 of Smoothness and Asymptotics of Solutions. Lecture Notes in Mathematics Springer, Berlin-Heidelberg (1988). [Google Scholar]
  15. A. Ern and J.-L. Guermond, Mollification in strongly Lipschitz domains with application to continuous and discrete de Rham complexes. Comput. Methods Appl. Math. 16 (2016) 51–75. [Google Scholar]
  16. M. Halla, Electromagnetic Stekloff eigenvalues: existence and behavior in the selfadjoint case. Preprint arXiv:1909.01983 (2019). [Google Scholar]
  17. M. Halla, Galerkin approximation of holomorphic eigenvalue problems: weak T-coercivity and T-compatibility. Preprint arXiv:1908.05029 (2019). [Google Scholar]
  18. O. Karma, Approximation in eigenvalue problems for holomorphic Fredholm operator functions. I. Numer. Funct. Anal. Optim. 17 (1996) 365–387. [Google Scholar]
  19. O. Karma, Approximation in eigenvalue problems for holomorphic Fredholm operator functions. II. (Convergence rate). Numer. Funct. Anal. Optim. 17 (1996) 389–408. [Google Scholar]
  20. V. Kozlov and V. Maz’ya, Differential equations with operator coefficients with applications to boundary value problems for partial differential equations. Springer Monographs in Mathematics, Springer, Berlin-Heidelberg (1999). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you