Free Access
Volume 55, Number 2, March-April 2021
Page(s) 357 - 380
Published online 15 March 2021
  1. M. Baer and J. Nunziato, A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. Int. J. Multiphase Flow 12 (1986) 861–889. [Google Scholar]
  2. T. Barberon and P. Helluy, Finite volume simulation of cavitating flows. Comput. Fluids 34 (2005) 832–858. [Google Scholar]
  3. R.A. Berry, J.W. Peterson, H. Zhang, R.C. Martineau, H. Zhao, L. Zou and D. Andrs, Relap-7 theory manual. Technical report, Idaho National Laboratory, INL/EXT-14-31366. [Google Scholar]
  4. C. Chalons, A simple and accurate coupled HLL-type approximate Riemann solver for the two-fluid two-pressure model of compressible flows, Int. J. Finite Vol. (2016) [Google Scholar]
  5. F. Coquel, T. Gallouët, J.-M. Hérard and N. Seguin, Closure laws for a two-fluid two-pressure model. C. R. Math. 334 (2002) 927–932. [Google Scholar]
  6. F. Coquel, T. Gallouët, P. Helluy, J.-M. Hérard, O. Hurisse and N. Seguin, Modelling compressible multiphase flows. ESAIM: Proc. Surv. 40 (2013) 34–50. [Google Scholar]
  7. F. Coquel, J.-M. Hérard, K. Saleh and N. Seguin, Two properties of two-velocity two-pressure models for two-phase flows. Commun. Math. Sci. 12 (2014) 593–600. [Google Scholar]
  8. F. Coquel, J.-M. Hérard and K. Saleh, A positive and entropy-satisfying finite volume scheme for the baer–nunziato model. J. Comput. Phys. 330 (2017) 401–435. [Google Scholar]
  9. F. Crouzet, F. Daude, P. Galon, J.-M. Hérard, O. Hurisse and Y. Liu, Validation of a two-fluid model on unsteady liquid–vapor water flows. Comput. Fluids 119 (2015) 131–142. [Google Scholar]
  10. P. Downar-Zapolski, Z. Bilicki, L. Bolle and J. Franco, The non-equilibrium relaxation model for one-dimensional flashing liquid flow. Int. J. Multiphase Flow 22 (1996) 473–483. [CrossRef] [Google Scholar]
  11. T. Gallouët, J.-M. Hérard and N. Seguin, Numerical modeling of two-phase flows using the two-fluid two-pressure approach. Math. Models Methods Appl. Sci. 14 (2004) 663–700. [Google Scholar]
  12. S. Gavrilyuk and R. Saurel, Mathematical and numerical modeling of two-phase compressible flows with micro-inertia. J. Comput. Phys. 175 (2002) 326–360. [Google Scholar]
  13. J. Glimm, D. Saltz and D. Sharp, Two-pressure two-phase flow. In: Advances In Nonlinear Partial Differential Equations and Related Areas: A Volume in Honor of Professor Xiaqi Ding. World Scientific (1998) 124–148. [Google Scholar]
  14. V. Guillemaud, Modelling and numerical simulation of two-phase flows using the two-fluid two-pressure approach. Theses, Université de Provence – Aix-Marseille I (2007) [Google Scholar]
  15. J.-M. Hérard and O. Hurisse, A fractional step method to compute a class of compressible gas–liquid flows. Comput. Fluids 55 (2012) 57–69. [Google Scholar]
  16. J.-M. Hérard and O. Hurisse, Computing two-fluid models of compressible water-vapour flows with mass transfer. In: 42nd AIAA Fluid Dynamics Conference and Exhibit (2012). DOI: 10.2514/6.2012-2959. [Google Scholar]
  17. J.-M. Hérard, O. Hurisse, A. Morente and K. Saleh, Application of a two-fluid model to simulate the heating of two-phase flows. In: Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems. Springer (2014) 857–864. [Google Scholar]
  18. M. Hillairet, On Baer-Nunziato multiphase flow models. ESAIM Proc. Surv. 66 (2019) 61–83. [Google Scholar]
  19. O. Hurisse, Application of an homogeneous model to simulate the heating of two-phase flows. Int. J. Finite 11 (2014) 1–37. [Google Scholar]
  20. O. Hurisse, Numerical simulations of steady and unsteady two-phase flows using a homogeneous model. Comput. Fluids 152 (2017) 88–103. [Google Scholar]
  21. H. Jin, J. Glimm and D. Sharp, Compressible two-pressure two-phase flow models. Phys. Lett. A 353 (2006) 469–474. [Google Scholar]
  22. Y. Liu, Contribution to the verification and the validation of an unsteady two-phase flow model. Theses, Aix-Marseille Université (2013). [Google Scholar]
  23. H. Lochon, Modelling and simulation of steam-water transients using the two-fluid approach. Theses, Aix Marseille Université (2016). [Google Scholar]
  24. H. Lochon, F. Daude, P. Galon and J.-M. Hérard, HLLC-type riemann solver with approximated two-phase contact for the computation of the baer–nunziato two-fluid model. J. Comput. Phys. 326 (2016) 733–762. [Google Scholar]
  25. S. Müller, M. Hantke and P. Richter, Closure conditions for non-equilibrium multi-component models. Continuum Mech. Thermodyn. 28 (2016) 1157–1189. [CrossRef] [MathSciNet] [Google Scholar]
  26. D.W. Schwendeman, C.W. Wahle and A.K. Kapila, The riemann problem and a high-resolution godunov method for a model of compressible two-phase flow. J. Comput. Phys. 212 (2006) 490–526. [Google Scholar]
  27. S. Tokareva and E.F. Toro, HLLC-type Riemann solver for the Baer-Nunziato equations of compressible two-phase flow. J. Comput. Phys. 229 (2010) 3573–3604. [Google Scholar]
  28. N. Yanenko, Méthode à pas fractionnaires. Résolutions de problèmes polydimensionnels de physique mathématique. Armand Colin (1968). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you