Free Access
Volume 55, Number 2, March-April 2021
Page(s) 381 - 407
Published online 15 March 2021
  1. A. Aktay, S. Bavadekar, G. Cossoul, J. Davis, D. Desfontaines, A. Fabrikant, E. Gabrilovich, K. Gadepalli, B. Gipson, M. Guevara, C. Kamath, M. Kansal, A. Lange, C. Mandayam, A. Oplinger, C. Pluntke, T. Roessler, A. Schlosberg, T. Shekel, S. Vispute, M. Vu, G. Wellenius, B. Williams and R.J. Wilson, Google COVID-19 Community Mobility Reports: Anonymization Process Description (version 1.1). Preprint: arXiv:2004.04145 (2020). [Google Scholar]
  2. G. Albi, M. Zanella and L. Pareschi, Control with uncertain data of socially structured compartmental epidemic models. Preprint: arXiv:2004.13067 (2020). [Google Scholar]
  3. D. Amadori and G. Guerra, Global weak solutions for systems of balance laws. Appl. Math. Lett. 12 (1999) 123–127. [Google Scholar]
  4. U.M. Ascher, S.J. Ruuth and R.J. Spiteri, Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations. App. Numer. Math. 25 (1997) 151–167. [Google Scholar]
  5. D. Balcan, V. Colizza, B. Gonçalves, H. Hud, J.J. Ramasco and A. Vespignani, Multiscale mobility networks and the spatial spreading of infectious diseases. Proc. Nat. Acad. Sci. United States Am. 106 (2009) 21484–21489. [Google Scholar]
  6. E. Barbera, G. Consolo and G. Valenti, Spread of infectious diseases in a hyperbolic reaction-diffusion susceptible-infected-removed model. Phys. Rev. E 88 (2013). [Google Scholar]
  7. S. Bargmann, P.M. Jordan and W. Lambert, A second-sound based hyperbolic SIR model for high-diffusivity sp read. Phys. Lett. A 375 (2011) 898–907. [Google Scholar]
  8. N. Bellomo, R. Bingham, M.A.J. Chaplain, G. Dosi, G. Forni, D.A. Knopoff, J. Lowengrub, R. Twarock and M.E. Virgillito, A multi-scale model of virus pandemic: heterogeneous interactive entities in a globally connected world. Math. Models Methods Appl. Sci. 30 (2020) 1591–1651. [Google Scholar]
  9. G. Bertaglia, M. Ioriatti, A. Valiani, M. Dumbser and V. Caleffi, Numerical methods for hydraulic transients in visco-elastic pipes. J. Fluids Struct. 81 (2018) 230–254. [Google Scholar]
  10. G. Bertaglia, V. Caleffi and A. Valiani, Modeling blood flow in viscoelastic vessels: the 1D augmented fluid-structure interaction system. Comput. Methods Appl. Mech. Eng. 360 (2020). [Google Scholar]
  11. S. Boscarino, L. Pareschi and G. Russo, A unified IMEX Runge-Kutta approach for hyperbolic systems with multiscale relaxation. SIAM J. Numer. Anal. 55 (2017) 2085–2109. [Google Scholar]
  12. A. Bressan, S. Canić, M. Garavello, M. Herty and B. Piccoli, Flows on networks: recent results and perspectives. EMS Surv. Math. Sci. 1 (2014) 47–111. [CrossRef] [Google Scholar]
  13. G. Bretti, R. Natalini and B. Piccoli, Numerical approximations of a traffic flow model on networks. Networks Heterogen Media 1 (2006) 57–84. [Google Scholar]
  14. G. Bretti, R. Natalini and M. Ribot, A hyperbolic model of chemotaxis on a network: a numerical study. ESAIM: M2AN 48 (2014) 231–258. [CrossRef] [EDP Sciences] [Google Scholar]
  15. V. Capasso and G. Serio, A generalization of the Kermack-McKendrick deterministic epidemic model. Math. Biosci. 42 (1978) 43–61. [Google Scholar]
  16. R.M. Colombo, M. Garavello, F. Marcellini and E. Rossi, An age and space structured SIR model describing the Covid-19 pandemic. J. Math. Ind. 10 (2020) 22. [PubMed] [Google Scholar]
  17. M. Dumbser and E.F. Toro, On universal Osher-type schemes for general nonlinear hyperbolic conservation laws. Commun. Comput. Phys. 10 (2011) 635–671. [Google Scholar]
  18. L. Fermo and A. Tosin, A fully-discrete-state kinetic theory approach to traffic flow on road networks. Math. Models Methods Appl. Sci. 25 (2015) 423–461. [Google Scholar]
  19. E. Franco, A feedback SIR (fSIR) model highlights advantages and limitations of infection-based social distancing. Preprint: arXiv:2004.13216 (2020). [Google Scholar]
  20. K.O. Friedrichs and P.D. Lax, Systems of conservation equations with a convex extension. Proc. Nat. Acad. Sci. 68 (1971) 1686–1688. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  21. M. Gatto, E. Bertuzzo, L. Mari, S. Miccoli, L. Carraro, R. Casagrandi and A. Rinaldo, Spread and dynamics of the COVID-19 epidemic in Italy: effects of emergency containment measures. Proceed. Nat. Acad. Sci. 117 (2020) 10484–10491. [Google Scholar]
  22. G. Giordano, F. Blanchini, R. Bruno, P. Colaneri, A. Di Filippo, A. Di Matteo and M. Colaneri, Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy. Nat. Med. 26 (2020) 855–860. [PubMed] [Google Scholar]
  23. L. Gosse and G. Toscani, An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations. C. R. Math. Acad. Sci. Paris 334 (2002) 337–342. [Google Scholar]
  24. H.W. Hethcote, The mathematics of infectious diseases. SIAM Rev. 42 (2000) 599–653. [CrossRef] [MathSciNet] [Google Scholar]
  25. S. Jin, L. Pareschi and G. Toscani, Diffusive relaxation schemes for multiscale discrete-velocity kinetic equations. SIAM J. Numer. Anal. 35 (1998) 2405–2439. [Google Scholar]
  26. D. Koch, R. Illner and J. Ma, Edge removal in random contact networks and the basic reproduction number. J. Math. Bio. 67 (2013) 217–238. [Google Scholar]
  27. A. Korobeinikov and P.K. Maini, Non-linear incidence and stability of infectious disease models. Math. Med. Biol. J. IMA 22 (2005) 113–128. [Google Scholar]
  28. M.U.G. Kraemer, C.-H. Yang, B. Gutierrez, C.-H. Wu, B. Klein, D.M. Pigott, L. du Plessis, N.R. Faria, R. Li, W.P. Hanage, J.S. Brownstein, M. Layan, A. Vespignani, H. Tian, C. Dye, O.G. Pybus and S.V. Scarpino, The effect of human mobility and control measures on the COVID-19 epidemic in China. Science 368 (2020) 493–497. [Google Scholar]
  29. P.L. Lions and G. Toscani, Diffusive limit for finite velocity Boltzmann kinetic models. Rev. Mat. Iberoamericana 13 (1997) 473–513. [Google Scholar]
  30. S. Merler and M. Ajelli, Human mobility and population heterogeneity in the spread of an epidemic. Proc. Comput. Sci. 1 (2010) 2237–2244. [Google Scholar]
  31. W. Min Liu, S.A. Levin and Y. Iwasa, Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models. J. Math. Biol. 23 (1986) 187–204. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  32. I. Müller and T. Ruggeri, Rational Extended Thermodynamics. Springer, New York (1998). [Google Scholar]
  33. J.D. Murray, Mathematical Biology I, II. Springer-Verlag, New York (2002–2003). [Google Scholar]
  34. G. Naldi and L. Pareschi, Numerical schemes for hyperbolic systems of conservation laws with stiff diffusive relaxation. SIAM J. Numer. Anal. 37 (2000) 1246–1270. [Google Scholar]
  35. L. Pareschi and G. Russo, Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25 (2005) 129–155. [Google Scholar]
  36. L. Pellis, F. Ball, S. Bansal, K. Eames, T. House, V. Isham and P. Trapman, Eight challenges for network epidemic models. Epidemics 10 (2015) 58–62. [PubMed] [Google Scholar]
  37. B. Piccoli and M. Garavello, Traffic Flow on Networks. American Institute of Mathematical Sciences (2006). [Google Scholar]
  38. S. Riley, K. Eames, V. Isham, D. Mollison and P. Trapman, Five challenges for spatial epidemic models. Epidemics 10 (2015) 68–71. [PubMed] [Google Scholar]
  39. G.-Q. Sun, Pattern formation of an epidemic model with diffusion. Nonlinear Dyn. 69 (2012) 1097–1104. [PubMed] [Google Scholar]
  40. E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 3rd edition. Springer Verlag (2009). [Google Scholar]
  41. M.A.C. Vollmer, S. Mishra, H.J.T. Unwin, A. Gandy, T.A. Mellan, H. Zhu, H. Coupland, I. Hawryluk, M. Hutchinson, O. Ratmann, P. Walker, C. Whittaker, L. Cattarino, C. Ciavarella, L. Cilloni, M. Baguelin, S. Bhatia, A. Boonyasiri, N. Brazeau, G. Charles, V. Cooper, Z. Cucunuba, G. Cuomo-dannenburg, A. Dighe, B. Djaafara, J. Eaton, L.V. Elsland, R. Fitzjohn, K. Fraser, K. Gaythorpe, W. Green, S. Hayes, N. Imai, E. Knock, D. Laydon, J. Lees, T. Mangal, A. Mousa, G. Nedjati-gilani, P. Nouvellet, D. Olivera, K.V. Parag, M. Pickles, H.A. Thompson, R. Verity, H. Wang, Y. Wang, O.J. Watson, L. Whittles, X. Xi and A. Ghani, Report 20: Using mobility to estimate the transmission intensity of COVID-19 in Italy: A subnational analysis with future scenarios. Technical Report May, Imperial College London (2020). [Google Scholar]
  42. Y. Wang, J. Wang and L. Zhang, Cross diffusion-induced pattern in an SI model. Appl. Math. Comput. 217 (2010) 1965–1970. [Google Scholar]
  43. J. Wang, F. Xie and T. Kuniya, Analysis of a reaction-diffusion cholera epidemic model in a spatially heterogeneous environment. Commun. Nonlinear Sci. Numer. Simul. 80 (2020). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you