Free Access
Volume 55, Number 3, May-June 2021
Page(s) 807 - 831
Published online 05 May 2021
  1. S. Benzoni-Gavage and D. Serre, Muldimensional Hyperbolic Partial Differential Equations. Oxford Mathematical Monographs: First Order Systems and Applications. The Clarendon Press, Oxford University Press, Oxford (2007). [Google Scholar]
  2. B. Bernstein, E.A. Kearsley and L.J. Zapas, A study of stress relaxation with finite strain. Trans. Soc. Rheol. 7 (1963) 391–410. [CrossRef] [Google Scholar]
  3. B. Bernstein, E.A. Kearsley and L.J. Zapas, Thermodynamics of perfect elastic fluids. J. Res. Nat. Bureau Stand. Sect. B Math. Math. Phys. 68B (1964) 103. [Google Scholar]
  4. E.C. Bingham, Fluidity and Plasticity. Mcgraw-Hill Book Company, Inc. (1922). [Google Scholar]
  5. R.B. Bird, C.F. Curtiss, R.C. Armstrong and O. Hassager, Fluid Mechanics. John Wiley & Sons, New York (1987). [Google Scholar]
  6. R.B. Bird, C.F. Curtiss, R.C. Armstrong and O. Hassager, Dynamics of Polymeric Liquids. In: Vol. 2 of Kinetic Theory. John Wiley & Sons, New York (1987). [Google Scholar]
  7. J. Bonet, A.J. Gil and R. Ortigosa, A computational framework for polyconvex large strain elasticity. Comput. Methods Appl. Mech. Eng. 283 (2015) 1061–1094. [Google Scholar]
  8. F. Bouchut, Entropy satisfying flux vector splittings and kinetic BGK models. Numer. Math. 94 (2003) 623–672. [Google Scholar]
  9. F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources. In: Frontiers in Mathematics. Birkhäuser Verlag, Basel (2004). [CrossRef] [Google Scholar]
  10. F. Bouchut and S. Boyaval, A new model for shallow viscoelastic fluids. M3AS 23 (2013) 1479–1526. [Google Scholar]
  11. F. Bouchut and S. Boyaval, Unified derivation of thin-layer reduced models for shallow free-surface gravity flows of viscous fluids. Eur. J. Mech. B Fluids. 55 (2016) 116–131. [Google Scholar]
  12. S. Boyaval, Derivation and numerical approximation of hyperbolic viscoelastic flow systems: Saint-Venant 2D equations for Maxwell fluids. Technical report (2017). Working paper or preprint. [Google Scholar]
  13. S. Boyaval, Viscoelastic flows with conservation laws (2019). Working paper or preprint. [Google Scholar]
  14. H.S. Carslaw and J.C. Jaeger, Operational Methods in Applied Mathematics. Oxford University Press, New York (1941). [Google Scholar]
  15. B.D. Coleman and W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13 (1963) 167–178. [Google Scholar]
  16. C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics. Springer-Verlag, Berlin GM (2000) 325. [Google Scholar]
  17. A.J.C. de Saint-Venant, Théorie du mouvement non-permanent des eaux, avec application aux crues des rivières et à l’introduction des marées dans leur lit. C. R. Acad. Sc. Paris 73 (1871) 147–154. [Google Scholar]
  18. T.W. DeWitt, A rheological equation of state which predicts non–newtonian viscosity, normal stresses, and dynamic moduli. J. Appl. Phys. 26 (1955) 889–894. [Google Scholar]
  19. M. Doï and S.F. Edwards, The Theory of Polymer Dynamics. Oxford Science (1998). [Google Scholar]
  20. M. Dressler, B.J. Edwards and H.C. Öttinger, Macroscopic thermodynamics of flowing polymeric liquids. Rheol. Acta 38 (1999) 117–136. [Google Scholar]
  21. B.J. Edwards and A.N. Beris, Remarks concerning compressible viscoelastic fluid models. J. Non-Newtonian Fluid Mech. 36 (1990) 411–417. [Google Scholar]
  22. S. Ferrari and F. Saleri, A new two-dimensional shallow water model including pressure effects and slow varying bottom topography. ESAIM: M2AN 38 (2004) 211–234. [CrossRef] [EDP Sciences] [Google Scholar]
  23. S. Gavrilyuk, K. Ivanova and N. Favrie, Multi-dimensional shear shallow water flows: problems and solutions. J. Comput. Phys. 366 (2018) 252–280. [Google Scholar]
  24. A. Gloria, P. Le Tallec and M. Vidrascu, Foundation, analysis, and numerical investigation of a variational network-based model for rubber. Continuum Mech. Thermodyn. 26 (2014) 1–31. [Google Scholar]
  25. E. Godlewski and P.-A. Raviart, Numerical approximation of hyperbolic systems of conservation laws. In: Vol. 118 of Applied Mathematical Sciences. Springer-Verlag, New York (1996). [CrossRef] [Google Scholar]
  26. M. Grmela and P.J. Carreau, Conformation tensor rheological models. J. Non-Newtonian Fluid Mech. 23 (1987) 271–294. [Google Scholar]
  27. J.B. Haddow and H.A. Erbay, Some aspects of finite amplitude transverse waves in a compressible hyperelastic solid. Quart. J. Mech. Appl. Math. 55 (2002) 17–28. [Google Scholar]
  28. M.A. Hulsen, A sufficient condition for a positive definite configuration tensor in differential models. J. Non-Newtonian Fluid Mech. 38 (1990) 93–100. [CrossRef] [Google Scholar]
  29. F. John, Almost global existence of elastic waves of finite amplitude arising from small initial disturbances. Comm. Pure Appl. Math. 41 (1988) 615–666. [Google Scholar]
  30. D.D. Joseph and J.C. Saut, Change of type and loss of evolution in the flow of viscoelastic fluids. J. Non-Newtonian Fluid Mech. 20 (1986) 117–141. [Google Scholar]
  31. D.D. Joseph, M. Renardy and J.C. Saut, Hyperbolicity and change of type in the flow of viscoelastic fluids. Arch. Ration. Mech. Anal. 87 (1985) 213–251. [Google Scholar]
  32. T. Kato, The cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Ration. Mech. Anal. 58 (1975) 181–205. [Google Scholar]
  33. A. Kaye, Non-newtonian flow in incompressible fluids. Technical Report 142. College of Aeronautics, Cranfield, England (1962). [Google Scholar]
  34. V.I. Kondaurov, On conservation laws and symmetrization of equations of the nonlinear theory of thermoelasticity. Dokl. Akad. Nauk SSSR 256 (1981) 819–823. [Google Scholar]
  35. J. Krishnan and D.J. Steigmann, A polyconvex formulation of isotropic elastoplasticity theory. IMA J. Appl. Math. 79 (2014) 722–738. [Google Scholar]
  36. R. Kupferman, E. Olami and R. Segev, Continuum dynamics on manifolds: application to elasticity of residually-stressed bodies. J. Elasticity 128 (2017) 61–847. [Google Scholar]
  37. R.G. Larson, Constitutive Equations for Polymer Melts and Solutions. Biotechnology Series. Butterworths (1988). [Google Scholar]
  38. E.H. Lieb, Convex trace functions and the Wigner-Yanase-Dyson conjecture. Adv. Math. 11 (1973) 267–288. [CrossRef] [Google Scholar]
  39. P.-L. Lions, Mathematical topics in fluid mechanics. Vol. 1. In: Vol. 3 of Oxford Lecture Series in Mathematics and its Applications: Incompressible Models. The Clarendon Press, Oxford University Press, New York (1996). [Google Scholar]
  40. A.T. Mackay and T.N. Phillnips, On the derivation of macroscopic models for compressible viscoelastic fluids using the generalized bracket framework. J. Non-Newton. Fluid Mech. 266 (2019) 59–71. [Google Scholar]
  41. A. Majda, Compressible fluid flow and systems of conservation laws in several space variables. In: Vol. 53 of Applied Mathematical Sciences. Springer-Verlag, New York (1984). [CrossRef] [Google Scholar]
  42. J.E. Marsden and T.J.R. Hughes, Mathematical foundations of elasticity. Dover Civil and Mechanical Engineering, Dover Publications (2012). [Google Scholar]
  43. G.A. Maugin, Continuum mechanics through the ages – from the renaissance to the twentieth century: from hydraulics to plasticity. In: Solid Mechanics and Its Applications. Springer International Publishing (2015). [Google Scholar]
  44. J.C. Maxwell, IV. on the dynamical theory of gases. Philos. Trans. R. Soc. London 157 (1867) 49–88. [Google Scholar]
  45. A. Morando, Y. Trakhinin and P. Trebeschi, Structural stability of shock waves in 2d compressible elastodynamics. Math. Ann. 378 (2020) 1471–1504. [Google Scholar]
  46. J.G. Oldroyd, On the formulation of rheological equations of state. Proc. R. Soc. London Ser. A. Math. Phys. Sci. 200 (1950) 523–541. [Google Scholar]
  47. F. Olsson, A solver for time-dependent viscoelastic fluid flows. J. Non-Newtonian Fluid Mech. 51 (1994) 309–340. [Google Scholar]
  48. R.G. Owens and T.N. Philips, Computational Rheology. Imperial College Press/World Scientific (2002). [Google Scholar]
  49. I. Peshkov, W. Boscheri, R. Loubère, E. Romenski and M. Dumbser, Theoretical and numerical comparison of hyperelastic and hypoelastic formulations for eulerian non-linear elastoplasticity. J. Comput. Phys. 387 (2019) 481–521. [Google Scholar]
  50. F.R. Phelan, M.F. Malone and H.H. Winter, A purely hyperbolic model for unsteady viscoelastic flow. J. Non-Newtonian Fluid Mech. 32 (1989) 197–224. [Google Scholar]
  51. S.-D. Poisson, Mémoire sur les équations générales de l’équilibre et du mouvement des corps solides élastiques et des fluides. J. Ec. Polytech. 20 (1831) 1–174. [Google Scholar]
  52. M. Renardy, Mathematical analysis of viscoelastic flows. In: Vol. 73 of CBMS-NSF Conference Series in Applied Mathematics. SIAM (2000). [Google Scholar]
  53. M. Renardy, A local existence and uniqueness theorem for a K-BKZ-fluid. Arch. Ration. Mech. Anal. 88 (1985) 83–94. [Google Scholar]
  54. C. Speziale, On maxwell models in viscoelasticity that are more computable. Int. J. Non Linear Mech. 35 (2000) 567–571. [Google Scholar]
  55. V. te Chow, Open-channel Hydraulics. Mc Graw Hill (1959). [Google Scholar]
  56. D.H. Wagner, Symmetric-hyperbolic equations of motion for a hyperelastic material. J. Hyperbolic Differ. Equ. 6 (2009) 615–630. [Google Scholar]
  57. D.H. Wagner,Conservation laws, coordinate transformations, and differential forms, edited by J. Glimm, M.J. Graham, J.W. Grove and B.J. Plohr. In: Hyperbolic Problems: Theory, Numerics, Applications. World Scientific (1994) 471–477. [Google Scholar]
  58. C.C. Wang and C. Truesdell, Introduction to rational elasticity. In: Monographs and Textbooks on Mechanics of Solids and Fluids: Mechanics of Continua. Noordhoff International Publishing, Leyden (1973). [Google Scholar]
  59. W.-A. Yong, Newtonian limit of maxwell fluid flows. Arch. Ration. Mech. Anal. 214 (2014) 913–922. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you