Open Access
Volume 55, Number 4, July-August 2021
Page(s) 1669 - 1697
Published online 10 August 2021
  1. G. Arioli, H. Koch and S. Terracini, Two novel methods and multi-mode periodic solutions for the Fermi-Pasta-Ulam model. Commun. Math. Phys. 255 (2005) 1–19. [Google Scholar]
  2. G. Arioli, F. Gazzola and H. Koch, Uniqueness and bifurcation branches for planar steady Navier-Stokes equations under Navier boundary conditions. J. Math. Fluid Mech. 23 (2021) 1–20. [Google Scholar]
  3. C. Bataillon, Private Communications (2020). [Google Scholar]
  4. C. Bataillon, F. Bouchon, C. Chainais-Hillairet, C. Desgranges, E. Hoarau, F. Martin, M. Tupin and J. Talandier, Corrosion modelling of iron based alloy in nuclear waste repository. Electrochim. Acta 55 (2010) 4451–4467. [CrossRef] [Google Scholar]
  5. C. Bataillon, F. Bouchon, C. Chainais-Hillairet, J. Fuhrmann, E. Hoarau and R. Touzani, Numerical methods for simulation of a corrosion model with moving oxide layer. J. Comput. Phys. 231 (2012) 6213–6231. [CrossRef] [Google Scholar]
  6. M. Breden and C. Kuehn, Rigorous validation of stochastic transition paths. J. Math. Pures Appl. 131 (2019) 88–129. [CrossRef] [Google Scholar]
  7. M. Breden, J.-P. Lessard and M. Vanicat, Global bifurcation diagrams of steady states of systems of pdes via rigorous numerics: a 3-component reaction-diffusion system. Act. Appli. Math. 128 (2013) 113–152. [CrossRef] [Google Scholar]
  8. M. Breden, C. Chainais-Hillairet and A. Zurek, Matlab code for “Existence of traveling wave solutions for the Diffusion Poisson Coupled Model: a computer-assisted proof’’. (2021). [Google Scholar]
  9. C. Chainais-Hillairet and C. Bataillon, Mathematical and numerical study of a corrosion model. Numer. Math. 110 (2008) 1–25. [CrossRef] [Google Scholar]
  10. C. Chainais-Hillairet and T.O. Gallouët, Study of a pseudo-stationary state for a corrosion model: existence and numerical approximation. Nonlinear Anal. Real World Appl. 31 (2016) 38–56. [CrossRef] [Google Scholar]
  11. S. Day, J.-P. Lessard and K. Mischaikow, Validated continuation for equilibria of PDEs. SIAM J. Numer. Anal. 45 (2007) 1398–1424. [CrossRef] [Google Scholar]
  12. M. Gameiro, J.-P. Lessard and A. Pugliese, Computation of smooth manifolds via rigorous multi-parameter continuation infinite dimensions. Found. Comput. Math. 16 (2016) 531–575. [CrossRef] [Google Scholar]
  13. J. Gómez-Serrano, Computer-assisted proofs in pde: a survey. SeMA J. 76 (2019) 459–484. [CrossRef] [Google Scholar]
  14. H. Koch, A. Schenkel and P. Wittwer, Computer-assisted proofs in analysis and programming in logic: a case study. SIAM Rev. 38 (1996) 565–604. [CrossRef] [Google Scholar]
  15. J.-P. Lessard and C. Reinhardt, Rigorous numerics for nonlinear differential equations using Chebyshev series. SIAM J. Numer. Anal. 52 (2014) 1–22. [CrossRef] [Google Scholar]
  16. M.T. Nakao, M. Plum and Y. Watanabe, Numerical Verification Methods and Computer-Assisted Proofs for Partial Differential Equations. Springer (2019). [CrossRef] [Google Scholar]
  17. S.M. Rump, INTLAB – INTerval LABoratory. Developments in Reliable Computing, Kluwer Academic Publishers, Dordrecht (1999) 77–104. [Google Scholar]
  18. S.M. Rump, Verification methods: Rigorous results using floating-point arithmetic. Acta Numer. 19 (2010) 287–449. [CrossRef] [Google Scholar]
  19. R.S.S. Sheombarsing, Validated Chebyshev-based computations for ordinary and partial differential equations. Ph.D. thesis, Vrije Universiteit Amsterdam (2018). [Google Scholar]
  20. L. Trefethen, Approximation Theory and Approximation Practice. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2013). [Google Scholar]
  21. W. Tucker, Validated Numerics: A Short Introduction to Rigorous Computations. Princeton University Press (2011). [Google Scholar]
  22. J.B. van den Berg and J.-P. Lessard, Rigorous numerics in dynamics. Notices Amer. Math. Soc. 62 (2015) 1057–1061. [Google Scholar]
  23. J.B. van den Berg and E. Queirolo, A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. J. Comput. Dyn. 8 (2020) 59–97. [Google Scholar]
  24. J.B. van den Berg and J.F. Williams, Optimal periodic structures with general space group symmetries in the Ohta-Kawasaki problem. Phys. D: Nonlinear Phenom. 415 (2021) 132732. [CrossRef] [Google Scholar]
  25. J.B. van den Berg, J.-P. Lessard and K. Mischaikow, Global smooth solution curves using rigorous branch following. Math. Comp. 79 (2010) 1565–1584. [CrossRef] [Google Scholar]
  26. T. Wanner, Computer-assisted bifurcation diagram validation and applications in materials science. In: Vol. 74 of Proc. Sympos. Appl. Math. Rigorous Numerics in Dynamics. Amer. Math. Soc., Providence, R I (2018) 123–174. [Google Scholar]
  27. N. Yamamoto, A numerical verification method for solutions of boundary value problems with local uniqueness by Banach’s fixed-point theorem. SIAM J. Numer. Anal. 35 (1998) 2004–2013. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you