Open Access
Volume 56, Number 1, January-February 2022
Page(s) 317 - 347
Published online 10 February 2022
  1. R. Abgrall, A genuinely multidimensional Riemann solver. hal:inria-00074814 (1993). [Google Scholar]
  2. D. Amadori and L. Gosse, Error Estimates for Well-Balanced Schemes on Simple Balance Laws: One-Dimensional Position-Dependent Models. BCAM Springer Briefs in Mathematics. Springer (2015). [CrossRef] [Google Scholar]
  3. D.S. Balsara, A two-dimensional HLLC Riemann solver for conservation laws: application to Euler and magnetohydrodynamic flows. J. Comput. Phys. 231 (2012) 7476–7503. [CrossRef] [MathSciNet] [Google Scholar]
  4. W. Barsukow, Stationarity and vorticity preservation for the linearized Euler equations in multiple spatial dimensions. In: International Conference on Finite Volumes for Complex Applications. Springer (2017) 449–456. [Google Scholar]
  5. W. Barsukow, Stationarity preserving schemes for multi-dimensional linear systems. Math. Comput. 88 (2019) 1621–1645. [Google Scholar]
  6. W. Barsukow, P.V.F. Edelmann, C. Klingenberg, F. Miczek and F.K. Röpke, A numerical scheme for the compressible low-Mach number regime of ideal fluid dynamics. J. Sci. Comput. 72 (2017) 623–646. [Google Scholar]
  7. M. Brio, A.R. Zakharian and G.M. Webb, Two-dimensional Riemann solver for Euler equations of gas dynamics. J. Comput. Phys. 167 (2001) 177–195. [CrossRef] [Google Scholar]
  8. C. Chalons, M. Girardin and S. Kokh, Large time step and asymptotic preserving numerical schemes for the gas dynamics equations with source terms. SIAM J. Sci. Comput. 35 (2013) A2874–A2902. [CrossRef] [Google Scholar]
  9. R. Courant and D. Hilbert, Methods of Mathematical Physics. Vol. II: Partial Differential Equations. Interscience, New York (1962). [Google Scholar]
  10. P. Colella, Multidimensional upwind methods for hyperbolic conservation laws. J. Comput. Phys. 87 (1990) 171–200. [CrossRef] [MathSciNet] [Google Scholar]
  11. S. Dellacherie, Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number. J. Comput. Phys. 229 (2010) 978–1016. [Google Scholar]
  12. S. Dellacherie, P. Omnes and F. Rieper, The influence of cell geometry on the Godunov scheme applied to the linear wave equation. J. Comput. Phys. 229 (2010) 5315–5338. [Google Scholar]
  13. L.C. Evans, Partial differential equations. Graduate Stud. Math. 19 (1998) 7. [Google Scholar]
  14. T.A. Eymann and P.L. Roe, Multidimensional active flux schemes. In: 21st AIAA Computational Fluid Dynamics Conference (2013). [Google Scholar]
  15. M. Fey, Multidimensional upwinding. Part I. The method of transport for solving the Euler equations. J. Comput. Phys. 143 (1998) 159–180. [CrossRef] [MathSciNet] [Google Scholar]
  16. M. Fey, Multidimensional upwinding. Part II. Decomposition of the Euler equations into advection equations. J. Comput. Phys. 143 (1998) 181–199. [CrossRef] [MathSciNet] [Google Scholar]
  17. E. Franck and L. Gosse, Stability of a Kirchhoff-Roe scheme for two-dimensional linearized Euler systems. Annali dell’Universita’ di Ferrara 64 (2018) 335–360. [CrossRef] [MathSciNet] [Google Scholar]
  18. I.M. Gelfand and G.E. Shilov, Generalized Functions. Vol. 1. Properties and Operations. Translated from the Russian by Eugene Saletan (1964). [Google Scholar]
  19. H. Gilquin, J. Laurens and C. Rosier, Multi-dimensional Riemann problems for linear hyperbolic systems: part II. In: Nonlinear Hyperbolic Problems: Theoretical, Applied, and Computational Aspects, Springer (1993) 284–290. [CrossRef] [Google Scholar]
  20. H. Gilquin, J. Laurens and C. Rosier, Multi-dimensional Riemann problems for linear hyperbolic systems. ESAIM: M2AN 30 (1996) 527–548. [CrossRef] [EDP Sciences] [Google Scholar]
  21. E. Godlewski and P.-A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws. Vol 118. Springer Science & Business Media (2013). [Google Scholar]
  22. S.K. Godunov, Vospominaniya o raznostnyh shemah: doklad na mezhdunarodnom simpoziume “Metod Godunova v gazovoy dinamike” Michigan 1997. Nauchnaya Kniga (1997). [Google Scholar]
  23. S.K. Godunov, Reminiscences about numerical schemes. Jou. Preprint arXiv:0810.0649 (2008). [Google Scholar]
  24. S.K. Godunov, A.V. Zabrodin, M.I. Ivanov, A.N. Kraiko and G.P. Prokopov, Numerical Solution of Multidimensional Problems of Gas Dynamics. Vol. 1. Moscow Izdatel Nauka (1976). [Google Scholar]
  25. H. Guillard and A. Murrone, On the behavior of upwind schemes in the low Mach number limit: II. Godunov type schemes. Comput. Fluids 33 (2004) 655–675. [Google Scholar]
  26. H. Guillard and C. Viozat, On the behaviour of upwind schemes in the low Mach number limit. Comput. Fluids 28 (1999) 63–86. [Google Scholar]
  27. L. Hörmander, Linear Partial Differential Operators. Vol. 116. Springer (2013). [Google Scholar]
  28. F. John, Partial differential equations. Appl. Math. Sci. 1 (1978) 198. [Google Scholar]
  29. F. John, Plane Waves and Spherical Means Applied to Partial Differential Equations. Springer-Verlag, Berlin-Heidelberg-New York (1981). [CrossRef] [Google Scholar]
  30. S. Klainerman and A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. 34 (1981) 481–524. [Google Scholar]
  31. R. Klein, Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics I: one-dimensional flow. J. Comput. Phys. 121 (1995) 213–237. [Google Scholar]
  32. R.J. LeVeque, Wave propagation algorithms for multidimensional hyperbolic systems. J. Comput. Phys. 131 (1997) 327–353. [CrossRef] [Google Scholar]
  33. R.J. LeVeque, Finite Volume Methods for Hyperbolic Problems. Vol. 31. Cambridge University Press (2002). [CrossRef] [Google Scholar]
  34. X.-S. Li and C.-W. Gu, Mechanism of Roe-type schemes for all-speed flows and its application. Comput. Fluids 86 (2013) 56–70. [CrossRef] [MathSciNet] [Google Scholar]
  35. T. Li and W. Sheng, The general Riemann problem for the linearized system of two-dimensional isentropic flow in gas dynamics. J. Math. Anal. App. 276 (2002) 598–610. [CrossRef] [Google Scholar]
  36. J. Li, M. Lukacova-Medvidova and G. Warnecke, Evolution Galerkin schemes applied to two-dimensional Riemann problems for the wave equation system. Dyn. Syst. 9 (2003) 559–576. [Google Scholar]
  37. M. Lukacova-Medvidova, K. Morton and G. Warnecke, Evolution Galerkin methods for hyperbolic systems in two space dimensions. Math. Comput. Am. Math. Soc. 69 (2000) 1355–1384. [CrossRef] [Google Scholar]
  38. M. Lukacova-Medvidova, K.W. Morton and G. Warnecke, Finite volume evolution Galerkin methods for hyperbolic systems. SIAM J. Sci. Comput. 26 (2004) 1–30. [CrossRef] [MathSciNet] [Google Scholar]
  39. M. Lukacova-Medvidova, J. Saibertova, G. Warnecke and Y. Zahaykah, On evolution Galerkin methods for the Maxwell and the linearized Euler equations. App. Math. 49 (2004) 415–439. [CrossRef] [Google Scholar]
  40. G. Métivier and S. Schochet, The incompressible limit of the non-isentropic Euler equations. Arch. Ration. Mech. Anal. 158 (2001) 61–90. [CrossRef] [MathSciNet] [Google Scholar]
  41. K.W. Morton and P.L. Roe, Vorticity-preserving Lax–Wendroff-type schemes for the system wave equation. SIAM J. Sci. Comput. 23 (2001) 170–192. [CrossRef] [MathSciNet] [Google Scholar]
  42. K. Oßwald, A. Siegmund, P. Birken, V. Hannemann and A. Meister, L2 Roe: a low dissipation version of Roe’s approximate Riemann solver for low Mach numbers. Int. J. Numer. Methods Fluids 81 (2016) 71–86. [Google Scholar]
  43. B. O’Neill, Semi-Riemannian Geometry With Applications to Relativity. Vol 103. Academic Press (1983). [Google Scholar]
  44. S. Ostkamp, Multidimensional characteristic Galerkin methods for hyperbolic systems. Math. Methods Appl. Sci. 20 (1997) 1111–1125. [CrossRef] [MathSciNet] [Google Scholar]
  45. J. Rauch, Partial differential equations. In: Vol. 128 of Graduate Texts in Mathematics (1991). [CrossRef] [Google Scholar]
  46. P. Roe, Is discontinuous reconstruction really a good idea? J. Sci. Comput. 73 (2017) 1094–1114. [CrossRef] [MathSciNet] [Google Scholar]
  47. P. Roe, Multidimensional upwinding. Handb. Numer. Anal. 18 (2017) 53–80. [Google Scholar]
  48. W. Rudin, Functional Analysis. International Series in Pure and Applied Mathematics. MacGraw Hill Inc., New York (1991). [Google Scholar]
  49. L. Schwartz, Théorie des distributions. Hermann Paris (1978). [Google Scholar]
  50. M.E. Taylor, Partial Differential Equations. I. Basic Theory. Springer (1996). [Google Scholar]
  51. B.J.R. Thornber and D. Drikakis, Numerical dissipation of upwind schemes in low Mach flow. Int. J. Numer. Methods Fluids 56 (2008) 1535–1541. [CrossRef] [Google Scholar]
  52. E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer Science & Business Media (2009). [Google Scholar]
  53. Y. Zheng, Systems of Conservation Laws: Two-Dimensional Riemann Problems. Springer Science & Business Media (2001). [CrossRef] [Google Scholar]
  54. C. Zuily, Éléments de distributions et d’équations aux dérivées partielles: cours et problèmes résolus. Vol 130. Dunod (2002). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you