Open Access
Issue |
ESAIM: M2AN
Volume 56, Number 1, January-February 2022
|
|
---|---|---|
Page(s) | 177 - 211 | |
DOI | https://doi.org/10.1051/m2an/2021086 | |
Published online | 07 February 2022 |
- M.S. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M.E. Rognes and G.N. Wells, The FEniCS project version 1.5. Arch. Numer. Softw. 3 (2015) 100. [Google Scholar]
- R.E. Bank and H. Yserentant, On the -stability of the L2-projection onto finite element spaces. Numer. Math. 126 (2014) 361–381. [CrossRef] [MathSciNet] [Google Scholar]
- I. Cioranescu, Geometry of Banach spaces, duality mappings and nonlinear problems. In: Mathematics and its Applications. Vol. 62, Kluwer Academic Publishers Group, Dordrecht (1990). [Google Scholar]
-
M. Crouzeix and V. Thomée, The stability in Lp and
of the L2-projection onto finite element function spaces. Math. Comp. 48 (1987) 521–532. [MathSciNet] [Google Scholar]
- L.F. Demkowicz and J. Gopalakrishnan, An overview of the discontinuous Petrov Galerkin method. In: Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations. Vol. 157 of IMA Vol. Math. Appl. Springer, Cham (2014) 149–180. [CrossRef] [Google Scholar]
- D.L. Donoho, For most large underdetermined systems of equations, the minimal l1-norm near-solution approximates the sparsest near-solution. Comm. Pure Appl. Math. 59 (2006) 907–934. [CrossRef] [MathSciNet] [Google Scholar]
- D.L. Donoho, For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution. Comm. Pure Appl. Math. 59 (2006) 797–829. [CrossRef] [MathSciNet] [Google Scholar]
- J. Douglas Jr, T. Dupont and L. Wahlbin, Optimal L∞ error estimates for Galerkin approximations to solutions of two-point boundary value problems. Math. Comp. 29 (1975) 475–483. [MathSciNet] [Google Scholar]
- J.W. Gibbs, Fourier’s series. Nature 59 (1899) 606. [CrossRef] [Google Scholar]
- J.-L. Guermond, A finite element technique for solving first-order PDEs in Lp. SIAM J. Numer. Anal. 42 (2004) 714–737. [CrossRef] [MathSciNet] [Google Scholar]
- J.-L. Guermond and B. Popov, Linear advection with ill-posed boundary conditions via -minimization. Int. J. Numer. Anal. Model. 4 (2007) 39–47. [MathSciNet] [Google Scholar]
- J.-L. Guermond and B. Popov, approximation of stationary Hamilton-Jacobi equations. SIAM J. Numer. Anal. 47 (2008/2009) 339–362. [CrossRef] [Google Scholar]
- J.-L. Guermond and B. Popov, An optimal -minimization algorithm for stationary Hamilton-Jacobi equations. Commun. Math. Sci. 7 (2009) 211–238. [CrossRef] [MathSciNet] [Google Scholar]
- J.-L. Guermond, F. Marpeau and B. Popov, A fast algorithm for solving first-order PDEs by -minimization. Commun. Math. Sci. 6 (2008) 199–216. [CrossRef] [MathSciNet] [Google Scholar]
- P. Houston, S. Roggendorf and K.G. van der Zee, Eliminating Gibbs phenomena: a non-linear Petrov-Galerkin method for the convection-diffusion-reaction equation. Comput. Math. App. 80 (2020) 851–873. [Google Scholar]
- B.-N. Jiang, Non-oscillatory and non-diffusive solution of convection problems by the iteratively reweighted least-squares finite element method. J. Comput. Phys. 105 (1993) 108–121. [CrossRef] [MathSciNet] [Google Scholar]
- B.-N. Jiang, The Least-Squares Finite Element Method: Theory and Applications in Computational Fluid Dynamics and Electromagnetics. Springer Science & Business Media (1998). [Google Scholar]
- V. John and P. Knobloch, On the performance of SOLD methods for convection-diffusion problems with interior layers. Int. J. Comput. Sci. Math. 1 (2007) 245–258. [CrossRef] [MathSciNet] [Google Scholar]
- V. John and P. Knobloch, On spurious oscillations at layers diminishing (SOLD) methods for convection–diffusion equations: part I – a review. Comput. Methods Appl. Mech. Eng. 196 (2007) 2197–2215. [CrossRef] [Google Scholar]
- V. John and P. Knobloch, On spurious oscillations at layers diminishing (SOLD) methods for convection–diffusion equations: part II – analysis for P1 and Q1 finite elements. Comput. Methods Appl. Mech. Eng. 197 (2008) 1997–2014. [CrossRef] [Google Scholar]
- D. Landers and L. Rogge, Natural choice of l1-approximants. J. Approx. Theory 33 (1981) 268–280. [CrossRef] [MathSciNet] [Google Scholar]
- J.E. Lavery, Nonoscillatory solution of the steady-state inviscid Burgers’ equation by mathematical programming. J. Comput. Phys. 79 (1988) 436–448. [CrossRef] [MathSciNet] [Google Scholar]
- J.E. Lavery, Solution of steady-state one-dimensional conservation laws by mathematical programming. SIAM J. Numer. Anal. 26 (1989) 1081–1089. [CrossRef] [MathSciNet] [Google Scholar]
- J.E. Lavery, Solution of steady-state, two-dimensional conservation laws by mathematical programming. SIAM J. Numer. Anal. 28 (1991) 141–155. [CrossRef] [MathSciNet] [Google Scholar]
- J. Li and L. Demkowicz, An Lp-DPG method for the convection–diffusion problem. Comput. Math. Appl. 95 (2021) 172–185. [CrossRef] [MathSciNet] [Google Scholar]
- J. Li and L. Demkowicz, An Lp-DPG Method with Application to 2D Convection-Diffusion Problems. Oden Institute REPORT 202106 (2021). [Google Scholar]
- J.J.H. Miller, Fitted Numerical Methods for Singular Perturbation Problems Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions/J.J.H. Miller, E. O’Riordan and G.I. Shishkin, revised edition. World Scientific, Singapore, River Edge, NJ (2012). [CrossRef] [Google Scholar]
- E. Moskona, P. Petrushev and E.B. Saff, The gibbs phenomenon for best L1-trigonometric polynomial approximation. Constr. Approx. 11 (1995) 391–416. [CrossRef] [MathSciNet] [Google Scholar]
- I. Muga and K.G. van der Zee, Discretization of linear problems in banach spaces: residual minimization, nonlinear Petrov-Galerkin, and monotone mixed methods. SIAM J. Numer. Anal. 58 (2020) 3406–3426. [CrossRef] [MathSciNet] [Google Scholar]
- I. Muga, M.J.W. Tyler and K.G. van der Zee, The discrete-dual minimal-residual method (DDMRes) for weak advection-reaction problems in Banach spaces. Comput. Methods Appl. Math. 19 (2019) 557–579. [CrossRef] [MathSciNet] [Google Scholar]
- G. Nürnberger, Approximation by Spline Functions. Springer-Verlag, Berlin Heidelberg (1989). [CrossRef] [Google Scholar]
- F.B. Richards, A Gibbs phenomenon for spline functions. J. Approx. Theory 66 (1991) 334–351. [CrossRef] [MathSciNet] [Google Scholar]
- S. Roggendorf, Eliminating the Gibbs phenomenon: the non-linear Petrov–Galerkin method for the convection-diffusion-reaction equation. The University of Nottingham (2019). [Google Scholar]
- H.-G. Roos, M. Stynes and L. Tobiska, Robust Numerical Methods for Singularly Perturbed Differential Equations, 2nd edition. Vol. 24 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (2008). Convection-diffusion-reaction and flow problems. [Google Scholar]
- E.B. Saff and S. Tashev, Gibbs phenomenon for best Lp approximation by polygonal lines. East J. Approx. 5 (1999) 235–251. [MathSciNet] [Google Scholar]
- I. Singer, Best approximation in normed linear spaces by elements of linear subspaces. Translated by R. Georgescu. Vol. 171 of Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Berlin Heidelberg (1970). [Google Scholar]
- H. Wilbraham, On a certain periodic function. Cambridge Dublin Math. J. 3 (1848) 1848. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.