Open Access
Volume 56, Number 1, January-February 2022
Page(s) 213 - 235
Published online 07 February 2022
  1. D. Armbruster, P. Degond and C. Ringhofer, A model for the dynamics of large queuing networks and supply chains. SIAM J. Appl. Math. 66 (2006) 896–920. [CrossRef] [MathSciNet] [Google Scholar]
  2. A. Aw and M. Rascle, Resurrection of ``second order’’ models of traffic flow. SIAM J. Appl. Math. 60 (2000) 916–938. [CrossRef] [MathSciNet] [Google Scholar]
  3. A. Bayen, A. Keimer, L. Pflug and T. Veeravalli, Modeling multi-lane traffic with moving obstacles by nonlocal balance laws. Preprint (2020). [Google Scholar]
  4. S. Blandin and P. Goatin, Well-posedness of a conservation law with non-local flux arising in traffic flow modeling. Numer. Math. 132 (2016) 217–241. [Google Scholar]
  5. A. Bressan and W. Shen, Entropy admissibility of the limit solution for a nonlocal model of traffic flow. Preprint arXiv:2011.05430 (2020). [Google Scholar]
  6. A. Bressan and W. Shen, On traffic flow with nonlocal flux: a relaxation representation. Arch. Ration. Mech. Anal. 237 (2020) 1213–1236. [CrossRef] [MathSciNet] [Google Scholar]
  7. F. Camilli, R. De Maio and A. Tosin, Measure-valued solutions to nonlocal transport equations on networks. J. Differ. Equ. 264 (2018) 7213–7241. [CrossRef] [Google Scholar]
  8. C. Chalons, P. Goatin and L.M. Villada, High-order numerical schemes for one-dimensional nonlocal conservation laws. SIAM J. Sci. Comput. 40 (2018) A288–A305. [CrossRef] [Google Scholar]
  9. F.A. Chiarello and P. Goatin, Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel. ESAIM: M2AN 52 (2018) 163–180. [CrossRef] [EDP Sciences] [Google Scholar]
  10. F.A. Chiarello and P. Goatin, Non-local multi-class traffic flow models. Netw. Heterog. Media 14 (2019) 371–387. [Google Scholar]
  11. F.A. Chiarello, J. Friedrich, P. Goatin, S. Göttlich and O. Kolb, A non-local traffic flow model for 1-to-1 junctions. Eur. J. Appl. Math. (2019) 1–21. [Google Scholar]
  12. F.A. Chiarello, J. Friedrich, P. Goatin and S. Göttlich, Micro-macro limit of a nonlocal generalized aw-rascle type model. SIAM J. Appl. Math. 80 (2020) 1841–1861. [CrossRef] [MathSciNet] [Google Scholar]
  13. J. Chien and W. Shen, Stationary wave profiles for nonlocal particle models of traffic flow on rough roads. NoDEA Nonlinear Differ. Equ. Appl. 26 (2019) 53. [CrossRef] [Google Scholar]
  14. I. Ciotir, R. Fayad, N. Forcadel and A. Tonnoir, A non-local macroscopic model for traffic flow. ESAIM: M2AN 55 (2021) 689–711. [CrossRef] [EDP Sciences] [Google Scholar]
  15. G.M. Coclite and M. Garavello, Vanishing viscosity for traffic on networks. SIAM J. Math. Anal. 42 (2010) 1761–1783. [CrossRef] [MathSciNet] [Google Scholar]
  16. G.M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network. SIAM J. Math. Anal. 36 (2005) 1862–1886. [CrossRef] [MathSciNet] [Google Scholar]
  17. G.M. Coclite, J.-M. Coron, N. De Nitti, A. Keimer and L. Pflug, A general result on the approximation of local conservation laws by nonlocal conservation laws: The singular limit problem for exponential kernels. Preprint arXiv:2012.13203 (2020). [Google Scholar]
  18. R.M. Colombo and A. Corli, Well posedness for multilane traffic models. Ann. Univ. Ferrara Sez. VII Sci. Mat. 52 (2006) 291–301. [CrossRef] [MathSciNet] [Google Scholar]
  19. R.M. Colombo, P. Goatin and M.D. Rosini, On the modelling and management of traffic. ESAIM: M2AN 45 (2011) 853–872. [CrossRef] [EDP Sciences] [Google Scholar]
  20. M. Colombo, G. Crippa, E. Marconi and L.V. Spinolo, Local limit of nonlocal traffic models: convergence results and total variation blow-up, in Annales de l’Institut Henri Poincaré C, Analyse non linéaire. Elsevier (2020). [Google Scholar]
  21. E. Dal Santo, C. Donadello, S.F. Pellegrino and M.D. Rosini, Representation of capacity drop at a road merge via point constraints in a first order traffic model. ESAIM: M2AN 53 (2019) 1–34. [CrossRef] [EDP Sciences] [Google Scholar]
  22. J. Friedrich and O. Kolb, Maximum principle satisfying cweno schemes for nonlocal conservation laws. SIAM J. Sci. Comput. 41 (2019) A973–A988. [CrossRef] [Google Scholar]
  23. J. Friedrich, S. Göttlich and E. Rossi, Nonlocal approaches for multilane traffic models. Preprint arXiv:2012.05794 (2020). [Google Scholar]
  24. J. Friedrich, O. Kolb and S. Göttlich, A Godunov type scheme for a class of LWR traffic flow models with non-local flux. Netw. Heterog. Media 13 (2018) 531–547. [CrossRef] [MathSciNet] [Google Scholar]
  25. M. Garavello and B. Piccoli, Traffic flow on networks, In vol. 1 of AIMS Series on Applied Mathematics, American Institute of Mathematical Sciences (AIMS), Springfield, MO, Conservation laws models (2006). [Google Scholar]
  26. M. Garavello, K. Han and B. Piccoli, Models for vehicular traffic on networks, In vol. 9 of AIMS Series on Applied Mathematics. American Institute of Mathematical Sciences (AIMS), Springfield, MO (2016). [Google Scholar]
  27. P. Goatin and S. Scialanga, Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity. Netw. Heterog. Media 11 (2016) 107–121. [Google Scholar]
  28. P. Goatin and F. Rossi, A traffic flow model with non-smooth metric interaction: well-posedness and micro-macro limit. Commun. Math. Sci. 15 (2017) 261–287. [CrossRef] [MathSciNet] [Google Scholar]
  29. P. Goatin, S. Göttlich and O. Kolb, Speed limit and ramp meter control for traffic flow networks. Eng. Optim. 48 (2016) 1121–1144. [CrossRef] [MathSciNet] [Google Scholar]
  30. J.M. Greenberg, A. Klar and M. Rascle, Congestion on multilane highways. SIAM J. Appl. Math. 63 (2003) 818–833. [CrossRef] [MathSciNet] [Google Scholar]
  31. B. Haut, G. Bastin and Y. Chitour, A macroscopic traffic model for road networks with a representation of the capacity drop phenomenon at the junctions, in Proceedings 16th IFAC World Congress, Prague, Czech Republic, July (2005). Tu-M01-TP/3. [Google Scholar]
  32. D. Helbing and A. Greiner, Modeling and simulation of multilane traffic flow. Phys. Rev. E 55 (1997) 5498. [CrossRef] [Google Scholar]
  33. M. Herty and A. Klar, Modeling, simulation, and optimization of traffic flow networks. SIAM J. Sci. Comput. 25 (2003) 1066–1087. [CrossRef] [MathSciNet] [Google Scholar]
  34. H. Holden and N.H. Risebro, A mathematical model of traffic flow on a network of unidirectional roads. SIAM J. Math. Anal. 26 (1995) 999–1017. [CrossRef] [Google Scholar]
  35. H. Holden and N.H. Risebro, Models for dense multilane vehicular traffic. SIAM J. Math. Anal. 51 (2019) 3694–3713. [CrossRef] [MathSciNet] [Google Scholar]
  36. A. Keimer and L. Pflug, Existence, uniqueness and regularity results on nonlocal balance laws. J. Differ. Equ. 263 (2017) 4023–4069. [Google Scholar]
  37. A. Keimer and L. Pflug, Nonlocal conservation laws with time delay. Nonlinear Differ. Equ. Appl. NoDEA 26 (2019) 54. [CrossRef] [Google Scholar]
  38. A. Keimer and L. Pflug, On approximation of local conservation laws by nonlocal conservation laws. J. Math. Anal. Appl. 475 (2019) 1927–1955. [CrossRef] [MathSciNet] [Google Scholar]
  39. A. Keimer, L. Pflug and M. Spinola, Nonlocal scalar conservation laws on bounded domains and applications in traffic flow. SIAM J. Math. Anal. 50 (2018) 6271–6306. [CrossRef] [MathSciNet] [Google Scholar]
  40. O. Kolb, S. Göttlich and P. Goatin, Capacity drop and traffic control for a second order traffic model. Netw. Heterog. Media 12 (2017) 663–681. [CrossRef] [MathSciNet] [Google Scholar]
  41. M.J. Lighthill and G.B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads. Proc. Roy. Soc. London. Ser. A. 229 (1955) 317–345. [Google Scholar]
  42. S. Moridpour, M. Sarvi and G. Rose, Lane changing models: a critical review. Transp. Lett. 2 (2010) 157–173. [CrossRef] [Google Scholar]
  43. J. Reilly, S. Samaranayake, M.L. Delle Monache, W. Krichene, P. Goatin and A.M. Bayen, Adjoint-based optimization on a network of discretized scalar conservation laws with applications to coordinated ramp metering. J. Optim. Theory Appl. 167 (2015) 733–760. [CrossRef] [MathSciNet] [Google Scholar]
  44. P.I. Richards, Shock waves on the highway. Oper. Res. 4 (1956) 42–51. [Google Scholar]
  45. J. Ridder and W. Shen, Traveling waves for nonlocal models of traffic flow. Discrete Contin. Dyn. Syst. 39 (2019) 4001–4040. [CrossRef] [MathSciNet] [Google Scholar]
  46. J.D. Towers, An explicit finite volume algorithm for vanishing viscosity solutions on a network. Preprint (2020). [Google Scholar]
  47. M. Treiber and A. Kesting, Traffic flow dynamics. Data, models and simulation, Translated by Treiber and Christian Thiemann. Springer, Heidelberg (2013). [CrossRef] [Google Scholar]
  48. H. Zhang, A non-equilibrium traffic model devoid of gas-like behavior. Transp. Res. B: Methodol. 36 (2002) 275–290. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you