Open Access
Issue
ESAIM: M2AN
Volume 56, Number 2, March-April 2022
Page(s) 651 - 678
DOI https://doi.org/10.1051/m2an/2022003
Published online 15 March 2022
  1. S. Ahmadikhamsi, F. Golfier, C. Oltean, E. Lefèvre and S.A. Bahrani, Impact of surfactant addition on non-newtonian fluid behavior during viscous fingering in Hele-Shaw cell. Phys. Fluids 32 (2020) 012103. [CrossRef] [Google Scholar]
  2. E. Álvarez-Lacalle, J. Ortn and J. Casademunt, Low viscosity contrast fingering in a rotating Hele-Shaw cell. Phys. Fluids 16 (2004) 908–924. [CrossRef] [MathSciNet] [Google Scholar]
  3. E. Álvarez-Lacalle, J. Ortn and J. Casademunt, Relevance of dynamic wetting in viscous fingering patterns. Phys. Rev. E 74 (2006) 025302. [CrossRef] [PubMed] [Google Scholar]
  4. J. Bear, Dynamics of fluids in porous media, Courier Dover Publications, New York (1988). [Google Scholar]
  5. I. Bischofberger, R. Ramachandran and S.R. Nagel, An island of stability in a sea of fingers: emergent global features of the viscous-flow instability. Soft Matter 11 (2015) 7428–7432. [CrossRef] [PubMed] [Google Scholar]
  6. L.l. Carrillo, F.X. Magdaleno, J. Casademunt and J. Ortn, Experiments in a rotating Hele-Shaw cell. Phys. Rev. E 54 (1996) 6260–6267. [CrossRef] [PubMed] [Google Scholar]
  7. J.-D. Chen, Growth of radial viscous fingers in a Hele-Shaw cell. J. Fluid Mech. 201 (1989) 223–242. [CrossRef] [Google Scholar]
  8. C. Chen and X. Yang, Efficient Numerical Scheme for a dendritic Solidification Phase Field model with melt convection. J. Comput. Phys. 388 (2019) 41–62. [CrossRef] [MathSciNet] [Google Scholar]
  9. C. Chen and X. Yang, Fast, provably unconditionally energy stable, and second-order accurate algorithms for the anisotropic Cahn-Hilliard Model. Comput. Meth. Appl. Mech. Eng. 351 (2019) 35–59. [CrossRef] [Google Scholar]
  10. C.-Y. Chen, Y.-S. Huang and J.A. Miranda, Diffuse-interface approach to rotating Hele-Shaw flows. Phys. Rev. E 84 (2011) 046302. [CrossRef] [PubMed] [Google Scholar]
  11. K. Cheng, C. Wang and S.M. Wise, An Energy Stable BDF2 Fourier Pseudo-Spectral Numerical Scheme for the Square Phase Field Crystal Equation. Commun. Comput. Phys. 26 (2019) 1335–1364. [CrossRef] [MathSciNet] [Google Scholar]
  12. M. Chinaud, V. Voulgaropoulos and P. Angeli, Surfactant effects on the coalescence of a drop in a Hele-Shaw cell. Phys. Rev. E. 94 (2016) 033101. [CrossRef] [PubMed] [Google Scholar]
  13. J.Y.Y. Chui, P. de Anna and R. Juanes, Interface evolution during radial miscible viscous fingering. Phys. Rev. E 92 (2015) 041003. [CrossRef] [PubMed] [Google Scholar]
  14. L. Dede, H. Garcke and K.F. Lam, A hele–shaw–cahn–hilliard model for incompressible two-phase flows with different densities. J. Math. Fluid Mech. 20 (2018) 531–567. [CrossRef] [MathSciNet] [Google Scholar]
  15. C. Derec, P. Boltenhagen, S. Neveu and J.C. Bacri, Magnetic instability between miscible fluids in a Hele-Shaw cell. Magnetohydrodynamics 44 (2008) 135–142. [CrossRef] [Google Scholar]
  16. K. Erik Teigen, P. Song, J. Lowengrub and A. Voigt, A diffuse-interface method for two-phase flows with soluble surfactants. J. Comput. Phys. 230 (2011) 375–393. [CrossRef] [MathSciNet] [Google Scholar]
  17. R. Farajzadeh, A.A. Eftekhari, H. Hajibeygi, S. Kahrobaei, J.M. van der Meer, S. Vincent-Bonnieu and W.R. Rossen, Simulation of instabilities and fingering in surfactant alternating gas (sag) foam enhanced oil recovery. J. Nat. Gas Sci. Eng. 34 (2016) 1191–1204. [CrossRef] [Google Scholar]
  18. I. Fonseca, M. Morini and V. Slastikov, Surfactants in foam stability: A phase-field approach. Arch. Ration. Mech. Anal. 183 (2007) 411–456. [CrossRef] [MathSciNet] [Google Scholar]
  19. G. Gompper and M. Schick, Self-assembling amphiphilic systems, in phase trasitions and critical phenomena, edited by C. Domb and J. Lebowitz. Academic Press, London, 16 (1994). [Google Scholar]
  20. S. Gu, H. Zhang and Z. Zhang, An energy-stable finite-difference scheme for the binary fluid-surfactant system. J. Comput. Phys. 367 (2014) 3–11. [Google Scholar]
  21. D. Han nd X. Wang, Decoupled energy-law preserving numerical schemes for the cahn–hilliard–darcy system. Numer. Methods Partial Differ. Equ. 32 (2016) 936–954. [CrossRef] [Google Scholar]
  22. D. Han and X. Wang, A Second Order in Time, Decoupled, Unconditionally Stable Numerical Scheme for the Cahn–Hilliard–Darcy System. J. Sci. Comput. 14 (2018) 1210–1233. [CrossRef] [MathSciNet] [Google Scholar]
  23. F. Hecht, New development in freefem++. J. Numer. Math. 20 (2012) 251–265. [Google Scholar]
  24. Y.-S. Huang and C.-Y. Chen, A numerical study on radial Hele-Shaw flow: Influence of fluid miscibility and injection scheme. Comput. Mech. 55 (2015) 407. [CrossRef] [MathSciNet] [Google Scholar]
  25. S. Komura and H. Kodama, Two-order-parameter model for an oil-water-surfactant system. Phys. Rev. E. 55 (1997) 1722–1727. [CrossRef] [Google Scholar]
  26. M. Laradji, H. Guo, M. Grant and M.J. Zuckermann, The effect of surfactants on the dynamics of phase separation. J. Phy. Condens. Matter 4 (1992) 6715. [CrossRef] [Google Scholar]
  27. M. Laradji, O.G. Mouristen, S. Toxvaerd and M.J. Zuckermann, Molecular dynamics simulatiens af phase separation in the presence ef surfactants. Phys. Rev. E. 50 (1994) 1722–1727. [Google Scholar]
  28. H. Liu and Y. Zhang, Phase-field modeling droplet dynamics with soluble surfactants. J. Comput. Phys. 229 (2010) 9166–9187. [CrossRef] [Google Scholar]
  29. S. Mollaei and A.H. Darooneh, Spreading, fingering instability and shrinking of a hydrosoluble surfactant on water. Exp. Therm. Fluid Sci. 86 (2017) 98–101. [CrossRef] [Google Scholar]
  30. D.A. Nield and A. Bejan, Convection in porous media, Springer-Verlag, New York, 2nd ed. (1999). [CrossRef] [Google Scholar]
  31. K. Okumura, Viscous dynamics of drops and bubbles in Hele-Shaw cells; Drainage, drag fraction, coalescence, and bursting. Adv. Colloid Inter. Sci. 225 (2018) 64–75. [CrossRef] [Google Scholar]
  32. S. Pramanik and M. Mishra, Effect of Péclet number on miscible rectilinear displacement in a Hele-Shaw cell. Phys. Rev. E 91 (2015) 033006. [CrossRef] [PubMed] [Google Scholar]
  33. S. Pramanik, T.K. Hota and M. Mishra, Influence of viscosity contrast on buoyantly unstable miscible fluids in porous media. J. Fluid Mech. 780 (2015) 388–406. [CrossRef] [MathSciNet] [Google Scholar]
  34. J.-R. Roan and E.I. Shakhnovich, Phase separation of a binary fluid containing surfactants in a Hele-Shaw cell. Phys. Rev. E 59 (1999) 2109. [CrossRef] [Google Scholar]
  35. P.G. Saffman and G. Taylor, The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc. R. Soc. Lond. A 245 (1958) 312–329. [CrossRef] [Google Scholar]
  36. P. Satyajit and M. Manoranjan, Nonlinear simulations of miscible viscous fingering with gradient stresses in porous media. Chem. Eng. Sci. 122 (2015) 523–532. [CrossRef] [Google Scholar]
  37. V. Sharma, S. Nand, S. Pramanik, C.-Y. Chen and M. Mishra, Control of radial miscible viscous fingering. J. Fluid Mech. 884 (2020) A16. [CrossRef] [Google Scholar]
  38. J. Shen and X. Yang, Numerical Approximations of Allen-Cahn and Cahn-Hilliard Equations. Disc. Contin. Dyn. Sys. A 28 (2010) 1669–1691. [CrossRef] [Google Scholar]
  39. J. Shen and X. Yang, The IEQ and SAV approaches and their extensions for a class of highly nonlinear gradient flow systems. Contemp. Math. 754 (2020) 217–245. [CrossRef] [Google Scholar]
  40. M. Sun, X. Feng and K. Wang, Numerical simulation of binary fluid–surfactant phase field model coupled with geometric curvature on the curved surface. Comput. Methods Appl. Mech. Eng. 367 (2020) 113123. [CrossRef] [Google Scholar]
  41. C.H. Teng, I.L. Chern and M.C. Lai, Simulating binary fluid-surfactant dynamics by a phase field model. Dis. Contin. Dyn. Syst.-B 17 (2010) 1289–1307. [Google Scholar]
  42. T. Teramoto and F. Yonezawa, Droplet growth dynamics in a water-oil-surfactant system. J. Colloid Inter. Sci. 235 (2001) 329–333. [CrossRef] [Google Scholar]
  43. R. Tsuzuki, Q. Li, Y. Nagatsu and C.-Y. Chen, Numerical study of immiscible viscous fingering in chemically reactive Hele-Shaw flows: Production of surfactants. Phys. Rev. Fluids 4 (2019) 104003. [CrossRef] [Google Scholar]
  44. R.G.M. van der Sman and S. van der Graaf, Diffuse interface model of surfactant adsorption onto flat and droplet interfaces. Rheol. Acta 46 (2006) 3–11. [CrossRef] [Google Scholar]
  45. R.G.M. van der Sman and M.B.J. Meinders, Analysis of improved lattice boltzmann phase field method for soluble surfactants. Comput. Phys. Comm. 199 (2016) 12–21. [CrossRef] [Google Scholar]
  46. R.A. Wooding, Growth of fingers at an unstable diffusing interface in a porous medium or Hele-Shaw cell. J. Fluid Mech. 39 (1969) 477–95. [CrossRef] [Google Scholar]
  47. X. Yang, A new efficient Fully-decoupled and Second-order time-accurate scheme for Cahn-Hilliard phase-field model of three-phase incompressible flow. Comput. Methods Appl. Mech. Eng. 376 (2021) 13589. [Google Scholar]
  48. X. Yang, A novel fully-decoupled scheme with second-order time accuracy and unconditional energy stability for the Navier-Stokes equations coupled with mass-conserved Allen-Cahn phase-field model of two-phase incompressible flow. Int. J. Numer. Methods Eng. 122 (2021) 1283–1306. [Google Scholar]
  49. X. Yang, A novel fully-decoupled, second-order and energy stable numerical scheme of the conserved Allen-Cahn type flow-coupled binary surfactant model. Comput. Methods Appl. Mech. Eng. 373 (2021) 113502. [CrossRef] [Google Scholar]
  50. X. Yang, A novel fully-decoupled, second-order time-accurate, unconditionally energy stable scheme for a flow-coupled volume-conserved phase-field elastic bending energy model. J. Comput. Phys. 432 (2021) 110015. [CrossRef] [Google Scholar]
  51. X. Yang, Efficient and Energy Stable scheme for the hydrodynamically coupled three components Cahn-Hilliard phase-field model using the stabilized-Invariant Energy Quadratization (S-IEQ) Approach. J. Comput. Phys. 438 (2021) 110342. [CrossRef] [Google Scholar]
  52. X. Yang, On a novel fully-decoupled, second-order accurate energy stable numerical scheme for a binary fluid-surfactant phase-field model. SIAM J. Sci. Comput. 43 (2021) B479–B507. [CrossRef] [Google Scholar]
  53. X. Yang and L. Ju, Linear and unconditionally energy stable schemes for the binary fluid-surfactant phase field model. Comput. Meth. Appl. Mech. Eng. 318 (2017) 1005–1029. [CrossRef] [Google Scholar]
  54. X. Yang and H. Yu, Efficient Second Order Unconditionally Stable Schemes for a Phase Field Moving Contact Line Model Using an Invariant Energy Quadratization Approach. SIAM J. Sci. Comput. 40 (2018) B889–B914. [CrossRef] [Google Scholar]
  55. J. Zhang and X. Yang, Unconditionally energy stable large time stepping method for the L2-gradient flow based ternary phase-field model with precise nonlocal volume conservation. Comput. Methods Appl. Mech. Eng. 361 (2020) 112743. [CrossRef] [Google Scholar]
  56. J. Zhang, C. Chen, J. Wang and X. Yang, Efficient, Second order accurate, and unconditionally energy stable numerical scheme for a new hydrodynamics coupled binary phase-field surfactant system. Comput. Phys. Comm. 251 (2020) 107122. [CrossRef] [Google Scholar]
  57. G. Zhu, J. Kou, S. Sun, J. Yao and A. Li, Decoupled, energy stable schemes for a phase-field surfactant model. Comput. Phys. Commun. 233 (2018) 67–77. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you