Open Access
Volume 56, Number 2, March-April 2022
Page(s) 705 - 726
Published online 15 March 2022
  1. H. Ammari, H. Kang, M. Lim and H. Zribi, The generalized polarization tensors for resolved imaging. Part I: Shape reconstruction of a conductivity inclusion. Math. Comp. 81 (2012) 367–386. [CrossRef] [MathSciNet] [Google Scholar]
  2. H. Ammari, G. Ciraolo, H. Kang, H. Lee and G. Milton, Spectral theory of a Neumann-Poincaré-type operator and analysis of cloaking due to anomalous localized resonance. Arch. Ration. Mech. Anal. 208 (2013) 667–692. [CrossRef] [MathSciNet] [Google Scholar]
  3. H. Ammari, Y. Chow, K. Liu and J. Zou, Optimal shape design by partial spectral data. SIAM J. Sci. Comput. 37 (2015) B855–B883. [CrossRef] [Google Scholar]
  4. H. Ammari, Y. Deng and P. Millien, Surface plasmon resonance of nanoparticles and applications in imaging. Arch. Ration. Mech. Anal. 220 (2016) 109–153. [Google Scholar]
  5. H. Ammari, P. Millien, M. Ruiz and H. Zhang, Mathematical analysis of plasmonic nanoparticles: the scalar case. Arch. Ration. Mech. Anal. 224 (2017) 597–658. [CrossRef] [MathSciNet] [Google Scholar]
  6. H. Ammari, Y. Chow and H. Liu, Quantum ergodicity and localization of plasmon resonances. Preprint arXiv:2003.03696 (2020). [Google Scholar]
  7. H. Ammari, Y. Chow, H. Liu and M. Sunkula, Quantum integral systems and concentration of plasmon resonance. Preprint arXiv:2109.13008 (2021). [Google Scholar]
  8. H. Ammari, Y.T. Chow and H. Liu, Localized sensitivity analysis at high-curvature boundary points of reconstructing inclusions in transmission problems. SIAM J. Math. Anal. (2022). DOI: 10.1137/20M1323576. [Google Scholar]
  9. K. Ando, H. Kang and H. Liu, Plasmon resonance with finite frequencies: A validation of the quasi-static approximation for diametrically small inclusions. SIAM J. Appl. Math. 76 (2016) 731–749. [Google Scholar]
  10. J. Anker, W. Hall, O. Lyandres, N. Shah, J. Zhao and R. Van Duyne, Biosensing with plasmonic nanosensors, and Applications, Cambridge University Press, New York (2010). [Google Scholar]
  11. G. Baffou, C. Girard and R. Quidant, Mapping heat origin in plasmonic structures. Phys. Rev. Lett. 104 (2010) 136805. [CrossRef] [PubMed] [Google Scholar]
  12. E. Blåsten, H. Li, H. Liu and Y. Wang, Localization and geometrization in plasmon resonances and geometric structures of Neumann-Poincaré eigenfunctions. ESAIM: M2AN 54 (2020) 957–976. [CrossRef] [EDP Sciences] [Google Scholar]
  13. E. Blåsten and H. Liu, Recovering piecewise constant refractive indices by a single far-field pattern. Inverse Probl. 36 (2020) 085005. [CrossRef] [Google Scholar]
  14. E. Blåsten and H. Liu, On corners scattering stably and stable shape determination by a single far-field pattern. Indiana Univ. Math. J. 70 (2021) 907–947. [CrossRef] [MathSciNet] [Google Scholar]
  15. E. Blåsten and H. Liu, Scattering by curvatures, radiationless sources, transmission eigenfunctions, and inverse scattering problems. SIAM J. Math. Anal. 53 (2021) 3801–3837. [CrossRef] [MathSciNet] [Google Scholar]
  16. G. Bouchitté and B. Schweizer, Cloaking of small objects by anomalous localized resonance. Quart. J. Mech. Appl. Math. 63 (2010) 437–463. [CrossRef] [MathSciNet] [Google Scholar]
  17. X. Cao, H. Diao, H. Liu and J. Zou, On nodal and generalized singular structures of Laplacian eigenfunctions and applications to inverse scattering problems. J. Math. Pures Appl. 143 (2020) 116–161. [CrossRef] [MathSciNet] [Google Scholar]
  18. Y.T. Chow, Y. Deng, Y. He, H. Liu and X. Wang, Surface-localized transmission eigenstates, super-resolution imaging, and pseudo surface plasmon modes. SIAM J. Imaging Sci. 14 (2021) 946–975. [CrossRef] [MathSciNet] [Google Scholar]
  19. A. Cintrón-Arias, H. Banks, A. Capaldi and A. Lloyd, A sensitivity matrix methodology for inverse problem formulation. J. Inverse Ill-Pose. P. 17 (2009) 1–20. [CrossRef] [Google Scholar]
  20. Y. Deng, J. Li and H. Liu, On identifying magnetized anomalies using geomagnetic monitoring. Arch. Ration. Mech. Anal. 231 (2019) 153–187. [CrossRef] [MathSciNet] [Google Scholar]
  21. Y. Deng, J. Li and H. Liu, On identifying magnetized anomalies using geomagnetic monitoring within a magnetohydrodynamic model. Arch. Ration. Mech. Anal. 235 (2020) 691–721. [CrossRef] [MathSciNet] [Google Scholar]
  22. Y. Deng, H. Li and H. Liu, Analysis of surface polariton resonance for nanoparticles in elastic system. SIAM J. Math. Anal. 52 (2020) 1786–1805. [CrossRef] [MathSciNet] [Google Scholar]
  23. Y. Deng, H. Liu and G. Zheng, Mathematical analysis of plasmon resonances for curved nanorods. J. Math. Pures Appl. 153 (2021) 248–280. [CrossRef] [MathSciNet] [Google Scholar]
  24. Y. Deng, H. Liu and G. Zheng, Plasmon resonances of nanorods in transverse electromagnetic scattering. J. Differ. Eqs. 318 (2022) 502–536. [CrossRef] [Google Scholar]
  25. H. Diao, X. Cao and H. Liu, On the geometric structures of transmission eigenfunctions with a conductive boundary condition and applications. Commun. Partial Differ. Equ. 46 (2021) 630–679. [CrossRef] [Google Scholar]
  26. A. Doicu, T. Trautmann and F. Schreier, Numerical regularization for atmospheric inverse problems, Springer Science & Business Media (2010). [CrossRef] [Google Scholar]
  27. X. Fang, Y. Deng and J. Li, Plasmon resonance and heat generation in nanostructures. Math. Method. Appl. Sci. 38 (2015) 4663–4672. [CrossRef] [MathSciNet] [Google Scholar]
  28. X. Fang, Y. Deng and H. Liu, Sharp estimate of electric field from a conductive rod and application. Stud. Appl. Math. 146 (2021) 279–297. [CrossRef] [MathSciNet] [Google Scholar]
  29. T. Feng, H. Kang and H. Lee, Construction of GPT-vanishing structures using shape derivative. J. Comput. Math. 35 (2017) 569–585. [CrossRef] [MathSciNet] [Google Scholar]
  30. Y. Gao, H. Liu, X. Wang and K. Zhang, On an artificial neural network for inverse scattering problems. J. Comput. Phys. 448 (2022) 110771. [CrossRef] [Google Scholar]
  31. D. Grieser, The plasmonic eigenvalue problem. Rev. Math. Phys. 26 (2014) 1450005. [CrossRef] [MathSciNet] [Google Scholar]
  32. M. Hanke, A regularizing Levenberg-Marquardt scheme with applications to inverse groundwater filtration problems. Inverse Probl. 13 (1997) 79. [CrossRef] [Google Scholar]
  33. M. Hanke, Recent progress in electrical impedance tomography. Inverse Probl. 19 (2003) S65–S90. [CrossRef] [Google Scholar]
  34. M. Hintermüller, A. Laurain and I. Yousept, Shape sensitivities for an inverse problem in magnetic induction tomography based on the eddy current model. Inverse Probl. 31 (2015) 065006. [CrossRef] [Google Scholar]
  35. M. Iglesias, K. Law and A. Stuart, Evaluation of Gaussian approximations for data assimilation in reservoir models. Comput. Geosci. 17 (2013) 851–885. [CrossRef] [MathSciNet] [Google Scholar]
  36. P. Jain, K. Lee, I. El-Sayed and M. El-Sayed, Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biomedical imaging and biomedicine. J. Phys. Chem. B 110 (2006) 7238–7248. [CrossRef] [PubMed] [Google Scholar]
  37. R. Kress, Linear Integral Equations, 2nd edition, Springer (1999). [CrossRef] [Google Scholar]
  38. H. Li and H. Liu, On anomalous localized resonance and plasmonic cloaking beyond the quasistatic limit. Proc. Roy. Soc. A 474 (2018). [Google Scholar]
  39. H. Li, J. Li and H. Liu, On quasi-static cloaking due to anomalous localized resonance in ℝ3. SIAM J. Appl. Math. 75 (2015) 1245–1260. [CrossRef] [MathSciNet] [Google Scholar]
  40. H. Li, J. Li and H. Liu, On novel elastic structures inducing polariton resonances with finite frequencies and cloaking due to anomalous localized resonances. J. Math. Pures Appl. 120 (2018) 195–219. [CrossRef] [MathSciNet] [Google Scholar]
  41. H. Li, S. Li, H. Liu and X. Wang, Analysis of electromagnetic scattering from plasmonic inclusions beyond the quasi-static approximation and applications. ESAIM: M2AN 53 (2019) 1351–1371. [CrossRef] [EDP Sciences] [Google Scholar]
  42. S. Link and M. El-Sayed, Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int. Rev. Phys. Chem. 19 (2000) 409–453. [CrossRef] [Google Scholar]
  43. H. Liu and C.H. Tsou, Stable determination of polygonal inclusions in Calderón’s problem by a single partial boundary measurement. Inverse Probl. 36 (2020) 085010. [CrossRef] [Google Scholar]
  44. H. Liu, C.H. Tsou and W. Yang, On Calderón’s inverse inclusion problem with smooth shapes by a single partial boundary measurement. Inverse Probl. 37 (2021) 055005. [CrossRef] [Google Scholar]
  45. I. Mayergoyz, D. Fredkin and Z. Zhang, Electrostatic (plasmon) resonances in nanoparticles. Phys. Rev. B 72 (2005) 155412. [CrossRef] [Google Scholar]
  46. G. Milton and N. Nicorovici, On the cloaking effects associated with anomalous localized resonance. Proc. R. Soc. A 462 (2006) 3027–3059. [CrossRef] [MathSciNet] [Google Scholar]
  47. J. Nam, C. Thaxton and C. Mirkin, Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301 (2003) 1884–886. [CrossRef] [PubMed] [Google Scholar]
  48. D. Nicholls and X. Tong, A high-order perturbation of surfaces algorithm for the simulation of localized surface plasmon resonances in two dimensions. J. Sci. Comput. 76 (2018) 1370–1395. [CrossRef] [MathSciNet] [Google Scholar]
  49. M. Ordal, L. Long, R. Bell, S. Bell, R. Bell, R. Alexander and C. Ward, Optical properties of the metals al, co, cu, au, fe, pb, ni, pd, pt, ag, ti, and w in the infrared and far infrared. Appl. Opt. 22 (1983) 1099–1119. [CrossRef] [Google Scholar]
  50. G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T.A. Klar, J. Feldmann, A. Nichtl and K. Kürzinger, Biomolecular recognition based on single gold nanoparticle light scattering. Nano Lett. 3 (2003) 935–938. [CrossRef] [Google Scholar]
  51. D. Sarid and W. Challener, Modern Introduction to Surface Plasmons: Theory, Mathematical Modeling. Nat. Mater. 7 (2008) 442–453. [CrossRef] [PubMed] [Google Scholar]
  52. C. Schillings, B. Sprungk and P. Wacker, On the Convergence of the Laplace Approximation and Noise-Level-Robustness of Laplace-based Monte Carlo Methods for Bayesian Inverse Problems. Numer. Math. 145 (2020) 915–971. [Google Scholar]
  53. S. Schultz, D. Smith, J. Mock and D. Schultz, Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc. Natl Acad. Sci. USA 97 (2000) 996–1001. [CrossRef] [PubMed] [Google Scholar]
  54. C. Vogel, Computational Methods for Inverse Problems. SIAM (2002). [CrossRef] [Google Scholar]
  55. W. Yin, W. Yang and H. Liu, A neural network scheme for recovering scattering obstacles with limited phaseless far-field data. J. Comput. Phys. 417 (2020) 109594. [CrossRef] [MathSciNet] [Google Scholar]
  56. G. Zheng, Mathematical analysis of plasmonic resonance for 2-D photonic crystal. J. Differ. Eqs. 266 (2019) 5095–5117. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you