Open Access
Issue
ESAIM: M2AN
Volume 56, Number 5, September-October 2022
Page(s) 1629 - 1653
DOI https://doi.org/10.1051/m2an/2022036
Published online 20 July 2022
  1. P.-A. Absil and J. Malick, Projection-like retractions on matrix manifolds. SIAM J. Optim. 22 (2012) 135–158. [Google Scholar]
  2. P.-A. Absil, R. Mahony and R. Sepulchre, Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton, NJ (2008). [CrossRef] [Google Scholar]
  3. F. Alouges and C. Audouze, Preconditioned gradient flows for nonlinear eigenvalue problems and application to the Hartree-Fock functional. Numer. Meth. Part. D. E. 25 (2009) 380–400. [CrossRef] [Google Scholar]
  4. R. Altmann and D. Peterseim, Localized computation of eigenstates of random Schrödinger operators. SIAM J. Sci. Comput. 41 (2019) B1211–B1227. [CrossRef] [Google Scholar]
  5. R. Altmann, P. Henning and D. Peterseim, The J-method for the Gross-Pitaevskii eigenvalue problem. Numer. Math. 148 (2021) 575–610. [CrossRef] [MathSciNet] [Google Scholar]
  6. R. Altmann, P. Henning and D. Peterseim, Localization and delocalization of ground states of Bose-Einstein condensates under disorder. SIAM J. Appl. Math. 82 (2022) 330–358. [Google Scholar]
  7. W. Bao and Q. Du, Computing the ground state solution of Bose–fEinstein condensates by a normalized gradient flow. SIAM J. Sci. Comput. 25 (2004) 1674–1697. [Google Scholar]
  8. D. Braess, Finite Elements – Theory, Fast Solvers, and Applications in Solid Mechanics, 3rd edition, Cambridge University Press, New York (2007). [CrossRef] [Google Scholar]
  9. E. Cancès, Self-consistent field algorithms for Kohn-Sham models with fractional occupation numbers. J. Chem. Phys. 114 (2001) 10616–10622. [CrossRef] [Google Scholar]
  10. E. Cancès and C. Le Bris, On the convergence of SCF algorithms for the Hartree-Fock equations. ESAIM: M2AN 34 (2000) 749–774. [CrossRef] [EDP Sciences] [Google Scholar]
  11. E. Cancès, R. Chakir and Y. Maday, Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models. ESAIM: M2AN 46 (2012) 341–388. [CrossRef] [EDP Sciences] [Google Scholar]
  12. E. Cancès, G. Dusson, Y. Maday, B. Stamm and M. Vohralk, A perturbation-method-based post-processing for the planewave discretization of Kohn-Sham models. J. Comput. Phys. 307 (2016) 446–459. [CrossRef] [MathSciNet] [Google Scholar]
  13. E. Cancès, G. Kemlin and A. Levitt, Convergence analysis of direct minimization and self-consistent iterations. SIAM J. Matrix Anal. Appl. 42 (2021) 243–274. [CrossRef] [MathSciNet] [Google Scholar]
  14. A. Edelman, T.A. Arias and S.T. Smith, The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20 (1998) 303–353. [Google Scholar]
  15. G.H. Golub and C.F. Van Loan, Matrix Computations, 4th edition, The Johns Hopkins University Press, Baltimore, London (2013). [Google Scholar]
  16. P. Harms and A. Mennucci, Geodesics in infinite dimensional Stiefel and Grassmann manifolds. C. R. Math. 350 (2012) 773–776. [CrossRef] [Google Scholar]
  17. P. Heid, B. Stamm and T.P. Wihler, Gradient flow finite element discretizations with energy-based adaptivity for the Gross-Pitaevskii equation. J. Comput. Phys. 436 (2021) 110165. [CrossRef] [Google Scholar]
  18. P. Henning and D. Peterseim, Sobolev gradient flow for the Gross-Pitaevskii eigenvalue problem: global convergence and computational efficiency. SIAM J. Numer. Anal. 58 (2020) 1744–1772. [Google Scholar]
  19. P. Hohenberg and W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136 (1964) B864–B871. [CrossRef] [Google Scholar]
  20. J. Hu, X. Liu, Z.-W. Wen and Y.-X. Yuan, A brief introduction to manifold optimization. J. Oper. Res. Soc. China 8 (2020) 199–248. [CrossRef] [MathSciNet] [Google Scholar]
  21. E. Jarlebring and P. Upadhyaya, Implicit algorithms for eigenvector nonlinearities. Numer. Algorithms 90 (2022) 301–321. [CrossRef] [MathSciNet] [Google Scholar]
  22. T. Kaneko, S. Fiori and T. Tanaka, Empirical arithmetic averaging over the compact Stiefel manifold. IEEE Trans. Signal Proces. 61 (2013) 883–894. [CrossRef] [Google Scholar]
  23. W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140 (1965) A1133–A1138. [CrossRef] [Google Scholar]
  24. P. Lancaster and M. Tismenetsky, The Theory of Matrices, 2nd edition. Academic Press, Orlando, FL (1985). [Google Scholar]
  25. C. Le Bris, Computational chemistry from the perspective of numerical analysis. Acta Numer. 14 (2005) 363–444. [CrossRef] [MathSciNet] [Google Scholar]
  26. E.H. Lieb, R. Seiringer and J. Yngvason, A rigorous derivation of the Gross-Pitaevskii energy functional for a two-dimensional Bose gas. Comm. Math. Phys. 224 (2001) 17–31. [CrossRef] [MathSciNet] [Google Scholar]
  27. J.M. MacLaren, D.P. Clougherty, M.E. McHenry and M.M. Donovan, Parameterised local spin density exchange-correlation energies and potentials for electronic structure calculations I. Zero temperature formalism. Comput. Phys. Commun. 66 (1991) 383–391. [CrossRef] [Google Scholar]
  28. J.P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23 (1981) 5048–5079. [Google Scholar]
  29. L.P. Pitaevskii and S. Stringari, Bose-Einstein Condensation. Oxford University Press, Oxford (2003). [Google Scholar]
  30. H. Sato and K. Aihara, Cholesky QR-based retraction on the generalized Stiefel manifold. Comput. Optim. Appl. 72 (2019) 293–308. [CrossRef] [MathSciNet] [Google Scholar]
  31. R. Schneider, T. Rohwedder, A. Neelov and J. Blauert, Direct minimization for calculating invariant subspaces in density functional computations of the electronic structure. J. Comput. Math. 27 (2009) 360–387. [Google Scholar]
  32. M.P. Teter, M.C. Payne and D.C. Allan, Solution of Schrödinger’s equation for large systems. Phys. Rev. B 40 (1989) 12255–12263. [CrossRef] [PubMed] [Google Scholar]
  33. A. Uschmajew, Well-posedness of convex maximization problems on Stiefel manifolds and orthogonal tensor product approximations. Numer. Math. 115 (2010) 309–331. [CrossRef] [MathSciNet] [Google Scholar]
  34. Z. Wen and W. Yin, A feasible method for optimization with orthogonality constraints. Math. Program. 142 (2013) 397–434. [CrossRef] [MathSciNet] [Google Scholar]
  35. C. Yang, J.C. Meza and L.-W. Wang, A constrained optimization algorithm for total energy minimization in electronic structure calculation. J. Comput. Phys. 217 (2006) 709–721. [CrossRef] [MathSciNet] [Google Scholar]
  36. C. Yang, J.C. Meza, B. Lee and L.-W. Wang, KSSOLV – a MATLAB toolbox for solving the Kohn-Sham equations. ACM Trans. Math. Softw. 36 (2009) 1–35. [CrossRef] [Google Scholar]
  37. E. Zeidler, Nonlinear Functional Analysis and its Applications IIa: Linear Monotone Operators. Springer-Verlag, New York (1990). [Google Scholar]
  38. Z. Zhang, Exponential convergence of Sobolev gradient descent for a class of nonlinear eigenproblems. Commun. Math. Sci. 20 (2022) 377–403. [CrossRef] [MathSciNet] [Google Scholar]
  39. H. Zhang and W.W. Hager, A nonmonotone line search technique and its application to unconstrained optimization. SIAM J. Optim. 14 (2004) 1043–1056. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you