Open Access
Issue
ESAIM: M2AN
Volume 56, Number 6, November-December 2022
Page(s) 1939 - 1954
DOI https://doi.org/10.1051/m2an/2022059
Published online 14 September 2022
  1. P. Albano, On the stability of the cut locus. Nonlinear Anal. Theory Methods Appl. 136 (2016) 51–61. [CrossRef] [Google Scholar]
  2. L. Ambrosio, Lecture notes on optimal transport problems. In: Lecture Notes in Mathematics. Springer, Berlin, Heidelberg (2003) 1–52. [Google Scholar]
  3. E. Bachini and M. Putti, Geometrically intrinsic modeling of shallow water flows. ESAIM: Math. Model. Num. Anal. 54 (2020) 2125–2157. [CrossRef] [EDP Sciences] [Google Scholar]
  4. L. Berti, E. Facca and M. Putti, Numerical solution of the L1-optimal transport problem on surfaces. Preprint https://arxiv.org/abs/2106.06479 (2021). [Google Scholar]
  5. L.E. Blumenson, A derivation of n-dimensional spherical coordinates. Am. Math. Mon. 67 (1960) 63–66. [Google Scholar]
  6. B. Bonnard, J.B. Caillau, R. Sinclair and M. Tanaka, Conjugate and cut loci of a two-sphere of revolution with application to optimal control. Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009) 1081–1098. [CrossRef] [MathSciNet] [Google Scholar]
  7. B. Bonnard, O. Cots and L. Jassionnesse, Geometric and Numerical Techniques to Compute Conjugate and Cut Loci on Riemannian Surfaces. Springer International Publishing, Cham (2014) 53–72. [Google Scholar]
  8. G. Bouchitté and G. Buttazzo, Characterization of optimal shapes and masses through Monge–Kantorovich equation. J. Eur. Math. Soc. 3 (2001) 139–168. [CrossRef] [MathSciNet] [Google Scholar]
  9. G. Buttazzo and E. Stepanov, On regularity of transport density in the Monge–Kantorovich problem. SIAM J. Control Optim. 42 (2003) 1044–1055. [CrossRef] [MathSciNet] [Google Scholar]
  10. J.-B. Caillau, O. Cots and P. Martinon, ct: control toolbox – numerical tools and examples in optimal control. Working paper or preprint (Feb. 2022). https://hal.inria.fr/hal-03558975. [Google Scholar]
  11. I. Chavel, Riemannian Geometry: A Modern Introduction. Cambridge Studies in Advanced Mathematics, 2nd edition. Cambridge University Press (2006). [Google Scholar]
  12. K. Crane, C. Weischedel and M. Wardetzky, Geodesics in heat: a new approach to computing distance based on heat flow. ACM Trans. Graph. 32 (2013) 1–11. [Google Scholar]
  13. L. De Pascale, L.C. Evans and A. Pratelli, Integral estimates for transport densities. Bull. London Mat. Soc. 36 (2004) 383–395. [CrossRef] [Google Scholar]
  14. T.K. Dey and K. Li, Cut locus and topology from surface point data. In: Proceedings of the Twenty-fifth Annual Symposium on Computational Geometry (2009) 125–134. [CrossRef] [Google Scholar]
  15. G. Dziuk and C.M. Elliott, Finite element methods for surface pdes. Acta Num. 22 (2013) 289–396. [CrossRef] [Google Scholar]
  16. L.C. Evans and W. Gangbo, Differential Equations Methods for the Monge–Kantorovich Mass Transfer Problem. Vol. 653. American Mathematical Soc. (1999). [Google Scholar]
  17. E. Facca and M. Benzi, Fast iterative solution of the optimal transport problem on graphs. SIAM J. Sci. Comput. 43 (2021) A2295–A2319. [CrossRef] [Google Scholar]
  18. E. Facca, F. Cardin and M. Putti, Towards a stationary Monge–Kantorovich dynamics: the physarum polycephalum experience. SIAM J. Appl. Math. 78 (2018) 651–676. [CrossRef] [MathSciNet] [Google Scholar]
  19. E. Facca, S. Daneri, F. Cardin and M. Putti, Numerical solution of Monge–Kantorovich equations via a dynamic formulation. J. Sci. Comput. 82 (2020) 1–26. [CrossRef] [MathSciNet] [Google Scholar]
  20. E. Facca, F. Piazzon and M. Putti, L1 transport energy. Appl. Math. Optim. 86 (2022) 1–40. [CrossRef] [MathSciNet] [Google Scholar]
  21. M. Feldman and R.J. McCann, Monge’s transport problem on a riemannian manifold. Trans. Amer. Math. Soc. 354 (2001) 1667–1697. [CrossRef] [Google Scholar]
  22. M. Feldman and R.J. McCann, Uniqueness and transport density in monge’s mass transportation problem. Calc. Var. Part. Diff. Equ. 15 (2002) 81–113. [CrossRef] [Google Scholar]
  23. A. Figalli and L. Rifford, Mass transportation on sub-riemannian manifolds. Geom. Funct. Anal. 20 (2010) 124–159. [CrossRef] [MathSciNet] [Google Scholar]
  24. A. Figalli and C. Villani, An approximation lemma about the cut locus, with applications in optimal transport theory. Methods App. Anal. 15 (2008) 149–154. [CrossRef] [Google Scholar]
  25. A. Figalli, L. Rifford and C. Villani, Tangent cut loci on surfaces. Differ. Geom. Appl. 29 (2011) 154–159. [CrossRef] [Google Scholar]
  26. F. Générau, E. Oudet and B. Velichkov, Cut locus on compact manifolds and uniform semiconcavity estimates for a variational inequality. Preprint https://arxiv.org/abs/2006.07222 (2020). [Google Scholar]
  27. F. Générau, E. Oudet and B. Velichkov, Numerical computation of the cut locus via a variational approximation of the distance function. ESAIM: Math. Model. Num. Anal. 56 (2022) 105–120. [CrossRef] [EDP Sciences] [Google Scholar]
  28. J. Gravesen, S. Markvorsen, R. Sinclair and M. Tanaka, The cut locus of a torus of revolution. Asian J. Math. 9 (2005) 103–120. [CrossRef] [MathSciNet] [Google Scholar]
  29. J.I. Itoh and K. Kiyohara, The cut loci and the conjugate loci on ellipsoids. Manuscr. Math. 114 (2004) 247–264. [Google Scholar]
  30. J.I. Itoh and R. Sinclair, Thaw: a tool for approximating cut loci on a triangulation of a surface. Exp. Math. 13 (2004) 309–325. [CrossRef] [Google Scholar]
  31. J.I. Itoh and M. Tanaka, The Lipschitz continuity of the distance function to the cut locus. Trans. Amer. Math. Soc. 353 (2001) 21–40. [Google Scholar]
  32. J. Jost, Riemannian Geometry and Geometric Analysis. Vol. 42005, Springer (2008). [Google Scholar]
  33. B.F. Kimball, Geodesics on a toroid. Am. J. Math. 52 (1930) 29–52. [CrossRef] [Google Scholar]
  34. C. Mancinelli, M. Livesu and E. Puppo, Practical computation of the cut locus on discrete surfaces. Comput. Graph Forum 40 (2021) 261–273. [CrossRef] [Google Scholar]
  35. C. Mantegazza and A.C. Mennucci, Hamilton-Jacobi equations and distance functions on Riemannian manifolds. Appl. Math. Optim. 47 (2003) 1–25. [Google Scholar]
  36. M.K. Misztal, J.A. Bærentzen, F. Anton and S. Markvorsen, Cut locus construction using deformable simplicial complexes. In: 2011 Eighth International Symposium on Voronoi Diagrams in Science and Engineering (ISVD). IEEE (2011) 134–141. [CrossRef] [Google Scholar]
  37. J.-M. Morvan, Generalized Curvatures. Vol. 2 of Geometry and Computing. Springer Science & Business Media, Berlin, Heidelberg (2008). [CrossRef] [Google Scholar]
  38. P.-O. Persson and G. Strang, A simple mesh generator in Matlab. SIAM Rev. 46 (2004) 329–345. [CrossRef] [MathSciNet] [Google Scholar]
  39. A. Pratelli, Equivalence between some definitions for the optimal mass transport problem and for the transport density on manifolds. Ann. Mat. Pura App. 184 (2005) 215–238. [CrossRef] [Google Scholar]
  40. T. Sakai, Riemannian Geometry. Vol. 149, American Mathematical Society (1996). [Google Scholar]
  41. F. Santambrogio, Absolute continuity and summability of transport densities: simpler proofs and new estimates. Calc. Var. Part. Diff. Equ. 36 (2009) 343–354. [CrossRef] [Google Scholar]
  42. F. Santambrogio, Optimal Transport for Applied Mathematicians. Birkäuser, NY (2015). [CrossRef] [Google Scholar]
  43. R. Sinclair and M. Tanaka, Loki: software for computing cut loci. Exp. Math. 11 (2002) 1–25. [Google Scholar]
  44. A.-K. Tornberg and B. Engquist, Regularization techniques for numerical approximation of PDEs with singularities. J. Scient. Comput. 19 (2003) 527–552. [CrossRef] [Google Scholar]
  45. A.-K. Tornberg and B. Engquist, Numerical approximations of singular source terms in differential equations. J. Comp. Phys. 200 (2004) 462–488. [CrossRef] [Google Scholar]
  46. C. Villani, Topics in Optimal Transportation. Vol. 58 of Graduate Studies in Mathematics. American Mathematical Society (2003). [CrossRef] [Google Scholar]
  47. C. Villani, Optimal Transport: Old and New. Vol. 338, Springer Science & Business Media (2008). [Google Scholar]
  48. C. Villani, Regularity of optimal transport and cut locus: from nonsmooth analysis to geometry to smooth analysis. Discrete Contin. Dyn. Syst. Ser. A 30 (2011) 559–571. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you