Open Access
Issue
ESAIM: M2AN
Volume 56, Number 6, November-December 2022
Page(s) 1911 - 1938
DOI https://doi.org/10.1051/m2an/2022063
Published online 14 September 2022
  1. R. Beyer and R.J. LeVeque, Analysis of a one-dimensional model for the immersed boundary method. SIAM J. Numer. Anal. 29 (1992) 332–364. [CrossRef] [MathSciNet] [Google Scholar]
  2. V. Bruneau, A. Doradoux and P. Fabrie, Convergence of a vector penalty projection scheme for the Navier Stokes equations with moving body. ESAIM Math. Model. Numer. Anal. 52 (2018) 1417–1436. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  3. N. Chaudhuri and E. Feireisl, Navier–Stokes–Fourier system with Dirichlet boundary conditions. (2021). DOI: 10.1080/00036811.2021.1992396. [Google Scholar]
  4. P.A. Davidson, Turbulence: An Introduction for Scientists and Engineers. Oxford University Press, Oxford (2004). [Google Scholar]
  5. E. Feireisl and A. Novotný, Weak–strong uniqueness property for the full Navier–Stokes-Fourier system. Arch. Ration. Mech. Anal. 204 (2012) 683–706. [CrossRef] [MathSciNet] [Google Scholar]
  6. E. Feireisl and A. Novotný, Singular Limits in Thermodynamics of Viscous Fluids, 2nd edition. Advances in Mathematical Fluid Mechanics. Birkhäuser (2017). [CrossRef] [Google Scholar]
  7. E. Feireisl, M. Lukáčová-Medviďová, H. Mizerová and B. She, On the convergence of a finite volume method for the Navier–Stokes–Fourier system. IMA J. Numer. Anal. 41 (2021) 2388–2422. [CrossRef] [MathSciNet] [Google Scholar]
  8. R. Glowinski, T.-W. Pan and J. Périaux, A fictitious domain method for Dirichlet problem and applications. Comput. Methods Appl. Mech. Eng. 111 (1994) 283–303. [CrossRef] [Google Scholar]
  9. R. Glowinski, T.-W. Pan and J. Périaux, A fictitious domain method for external incompressible viscous flow modeled by Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 112 (1994) 133–148. [CrossRef] [Google Scholar]
  10. J.S. Hesthaven, A stable penalty method for the compressible Navier-Stokes equations. II. One-dimensional domain decomposition schemes. SIAM J. Sci. Comput. 18 (1997) 658–685. [CrossRef] [MathSciNet] [Google Scholar]
  11. J.S. Hesthaven, A stable penalty method for the compressible Navier-Stokes equations. III. Multidimensional domain decomposition schemes. SIAM J. Sci. Comput. 20 (1998) 62–93. [CrossRef] [MathSciNet] [Google Scholar]
  12. M.A. Hyman, Non-iterative numerical solution of boundary-value problems. Appl. Sci. Res. Sec. B 2 (1952) 325–351. [CrossRef] [Google Scholar]
  13. M. Lukáčová-Medviďová, H. Mizerová and B. She, New invariant domain preserving finite volume schemes for compressible flows. In: Recent Advances in Numerical Methods for Hyperbolic PDE Systems. Springer (2021) 131–153. [Google Scholar]
  14. P. Manneville, Rayleigh-Bénard convection: thirty years of experimental, theoretical, and modeling work. In: Dynamics of Spatio-temporal Cellular Structures, edited by I. Mutabazi, J.E. Wesfreid and E. Guyon Springer (2006) 41–64. [CrossRef] [Google Scholar]
  15. B. Maury, Numerical analysis of a finite element/volume penalty method. SIAM J. Numer. Anal. 47 (2009) 1126–1148. [CrossRef] [MathSciNet] [Google Scholar]
  16. D. Medková, Boundary Value Problems on Bounded and Unbounded Lipschitz Domains. Springer-Verlag, Cham (2018). [Google Scholar]
  17. C.S. Peskin, Flow patterns around heart valves: a numerical method. J. Comput. Phys. 10 (1972) 252–271. [Google Scholar]
  18. C.S. Peskin, The immersed boundary method. Acta Numer. 11 (2002) 479–517. [CrossRef] [MathSciNet] [Google Scholar]
  19. N. Saito and G. Zhou, Analysis of the fictitious domain method with an L2-penalty for elliptic problems. Numer. Funct. Anal. Optim. 36 (2015) 501–527. [CrossRef] [MathSciNet] [Google Scholar]
  20. S. Zhang, A domain embedding method for mixed boundary value problems. C. R. Math. Acad. Sci. Paris 343 (2006) 287–290. [CrossRef] [MathSciNet] [Google Scholar]
  21. G. Zhouand N. Saito, Analysis of the fictitious domain method with penalty for elliptic problems. Jpn. J. Ind. Appl. Math. 31 (2014) 57–85. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you