Open Access
Volume 57, Number 1, January-February 2023
Page(s) 69 - 106
Published online 12 January 2023
  1. D. Drew and S. Passman, Theory of Multicomponent Fluids. Springer-Verlag, Berlin Heidelberg (1999). [CrossRef] [Google Scholar]
  2. I. Müller, A thermodynamic theory of mixtures of fluids. Arch. Ration. Mech. Anal. 28 (1968) 1–39. [CrossRef] [Google Scholar]
  3. I. Müller and T. Ruggeri, Extended Thermodynamics. Springer, New York (1993). [CrossRef] [Google Scholar]
  4. V. Giovangigli, Multicomponent Flow Modeling. Birkhäuser, Boston (1999). [CrossRef] [Google Scholar]
  5. T. Ruggeri, Multi-temperature mixture of fluid. Theor. Appl. Mech. 36 (2009) 207–238. [CrossRef] [MathSciNet] [Google Scholar]
  6. D. Bothe and W. Dreyer, Continuum Thermodynamics of chemically reacting fluid mixtures. Acta Mech. 226 (2015) 1757–1805. [CrossRef] [MathSciNet] [Google Scholar]
  7. X. Huo, A. Jüngel and A.E. Tzavaras, High-friction limits of Euler flows for multicomponent systems. Nonlinearity 32 (2019) 2875–2913. [CrossRef] [MathSciNet] [Google Scholar]
  8. V. Giovangigli and M. Massot, The local Cauchy problem for multicomponent reactive flows in full vibrational non-equilibrium. Math. Methods Appl. Sci. 21 (1998) 1415–1439. [CrossRef] [MathSciNet] [Google Scholar]
  9. L. Boudin, B. Grec and V. Pavan, Diffusion models for mixtures using a stiff dissipative hyperbolic formalism. J. Hyperbolic Differ. Equ. 16 (2019) 293–312. [CrossRef] [MathSciNet] [Google Scholar]
  10. S. Kawashima, Systems of a Hyperbolic-Parabolic composite type, with applications to the equations of magnetohydrodynamics. Ph.D. thesis, Kyoto University (1984). [Google Scholar]
  11. C. Christoforou and A.E. Tzavaras, Relative entropy for hyperbolic–parabolic systems and application to the constitutive theory of thermoviscoelasticity. Arch. Ration. Mech. Anal. 229 (2018) 1–52. [CrossRef] [MathSciNet] [Google Scholar]
  12. D. Bothe, On the Maxwell-Stefan approach to multicomponent diffusion, in Vol. 80 Parabolic problems, Progr. Nonlinear Differential Equations Appl., Birkhäuser/Springer Basel AG, Basel (2011) 81–93. [Google Scholar]
  13. A. Jüngel and I.V. Stelzer, Existence analysis of Maxwell-Stefan systems for multicomponent mixtures. SIAM J. Math. Anal. 45 (2013) 2421–2440. [CrossRef] [MathSciNet] [Google Scholar]
  14. X. Huo, A. Jüngel and A.E. Tzavaras, Weak-strong uniqueness for Maxwell-Stefan systems. SIAM J. Math. Anal. 54 (2022) 3215–3252. [CrossRef] [MathSciNet] [Google Scholar]
  15. D. Bothe and P.E. Druet, Mass transport in multicomponent compressible fluids: local and global well-posedness in classes of strong solutions for general class-one models. Nonlinear Anal. 210 (2021) 53. [Google Scholar]
  16. T. Piasecki, Y. Shibata and E. Zatorska, On the isothermal compressible multi-component mixture flow: The local existence and maximal Lp-Lq regularity of solutions. Nonlinear Anal. 189 (2019) 27. [Google Scholar]
  17. L. Ostrowski and C. Rohde, Compressible multicomponent flow in porous media with Maxwell-Stefan diffusion. Math. Methods Appl. Sci. 43 (2020) 4200–4221. [CrossRef] [MathSciNet] [Google Scholar]
  18. T. Piasecki, Y. Shibata and E. Zatorska, On strong dynamics of compressible two-component mixture flow. SIAM J. Math. Anal. 51 (2019) 2793–2849. [CrossRef] [MathSciNet] [Google Scholar]
  19. L. Yang and E. Zatorska, On weak solutions to the compressible inviscid two-fluid model. J. Differ. Equ. 299 (2021) 33–50. [CrossRef] [Google Scholar]
  20. P.B. Mucha, M. Pokorný and E. Zatorska, Heat-conducting, compressible mixtures with multicomponent diffusion: construction of a weak solution. SIAM J. Math. Anal. 47 (2015) 3747–3797. [CrossRef] [MathSciNet] [Google Scholar]
  21. E. Zatorska, Mixtures: sequential stability of variational entropy solutions. J. Math. Fluid Mech. 17 (2015) 437–461. [CrossRef] [MathSciNet] [Google Scholar]
  22. P.B. Mucha, M. Pokorný and E. Zatorska, Existence of stationary weak solutions for compressible heat conducting flows, in Handbook of Mathematical Analysis in Mechanics of Viscous Fluids , Edited by Y. Giga and A. Novotny. Springer, Cham (2018) 2595–2662. [CrossRef] [Google Scholar]
  23. M. Buliček, A. Jüngel, M. Pokorný and N. Zamponi, Existence analysis of a stationary compressible fluid model for heat-conducting and chemically reacting mixtures. J. Math. Phys. 63 (2022) 051501. [Google Scholar]
  24. V. Giovangigli, Z.-B. Yang and W.-A. Yong, Relaxation limit and initial-layers for a class of hyperbolic-parabolic systems. SIAM J. Math. Anal. 50 (2018) 4655–4697. [CrossRef] [MathSciNet] [Google Scholar]
  25. C.M. Dafermos, Stability of motions of thermoelastic fluids. J. Therm. Stresses 2 (1979) 127–134. [CrossRef] [Google Scholar]
  26. D. Lesan, On the stability of motions of thermoelastic fluids. J. Therm. Stresses 17 (1994) 409–418. [CrossRef] [Google Scholar]
  27. H. Callen, Thermodynamics and an Introduction to Thermostatistics. New York: John Wiley & Sons (1985). [Google Scholar]
  28. J. Silvester, Determinants of Block Matrices, Mathematical Gazette. The Math. Assoc. 84 (2000) 460–467. [Google Scholar]
  29. P.E. Druet, Maximal mixed parabolic-hyperbolic regularity for the full equations of multicomponent fluid dynamics. Nonlinearity 35 (2022) 3812. [CrossRef] [MathSciNet] [Google Scholar]
  30. C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, 4th edn. Grundlehren der Mathematischen Wissenschaften, Springer Verlag, Berlin (2016) 325. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you