Open Access
Issue |
ESAIM: M2AN
Volume 57, Number 2, March-April 2023
|
|
---|---|---|
Page(s) | 1063 - 1086 | |
DOI | https://doi.org/10.1051/m2an/2023005 | |
Published online | 12 April 2023 |
- H. Amann and J. Escher, Analysis. II. Birkhäuser Verlag, Basel (2008). Translated from the 1999 German original by Silvio Levy and Matthew Cargo. [Google Scholar]
- A.I. Ávila, S. Kopecz and A. Meister, A comprehensive theory on generalized BBKS schemes. Appl. Numer. Math. 157 (2020) 19–37. [CrossRef] [MathSciNet] [Google Scholar]
- N. Broekhuizen, G.J. Rickard, J. Bruggeman and A. Meister, An improved and generalized second order, unconditionally positive, mass conserving integration scheme for biochemical systems. Appl. Numer. Math. 58 (2008) 319–340. [CrossRef] [MathSciNet] [Google Scholar]
- J. Bruggeman, H. Burchard, B.W. Kooi and B. Sommeijer, A second-order, unconditionally positive, mass-conserving integration scheme for biochemical systems. Appl. Numer. Math. 57 (2007) 36–58. [CrossRef] [MathSciNet] [Google Scholar]
- H. Burchard, E. Deleersnijder and A. Meister, A high-order conservative Patankar-type discretisation for stiff systems of production–destruction equations. Appl. Numer. Math. 47 (2003) 1–30. [Google Scholar]
- M. Ciallella, L. Micalizzi, P. Öffner and D. Torlo, An arbitrary high order and positivity preserving method for the shallow water equations. Comput Fluids 247 (2022) 105630. [CrossRef] [Google Scholar]
- P. Deuflhard and F. Bornemann, Scientific Computing with Ordinary Differential Equations. Vol. 42 of Texts in Applied Mathematics. Springer-Verlag, New York (2002). Translated from the 1994 German original by Werner C. Rheinboldt. [Google Scholar]
- L. Formaggia and A. Scotti, Positivity and conservation properties of some integration schemes for mass action kinetics. SIAM J. Numer. Anal. 49 (2011) 1267–1288. [CrossRef] [MathSciNet] [Google Scholar]
- S. Gottlieb, C.-W. Shu and E. Tadmor, Strong stability-preserving high-order time discretization methods. SIAM Rev. 43 (2001) 89–112. [Google Scholar]
- J. Huang and C.-W. Shu, Positivity-preserving time discretizations for production-destruction equations with applications to non-equilibrium flows. J. Sci. Comput. 78 (2019) 1811–1839. [CrossRef] [MathSciNet] [Google Scholar]
- J. Huang, W. Zhao and C.-W. Shu, A third-order unconditionally positivity-preserving scheme for production-destruction equations with applications to non-equilibrium flows. J. Sci. Comput. 79 (2019) 1015–1056. [CrossRef] [MathSciNet] [Google Scholar]
- J. Huang, T. Izgin, S. Kopecz, A. Meister and C.-W. Shu, Lyapunov Stability of third order SSPMPRK schemes (code) (December 2022). https://github.com/IzginThomas/LyapunovSSPMPRK.git. [Google Scholar]
- T. Izgin, S. Kopecz and A. Meister, On Lyapunov stability of positive and conservative time integrators and application to second order modified Patankar–Runge–Kutta schemes. ESAIM Math. Model. Numer. Anal. 56 (2022) 1053–1080. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- T. Izgin, S. Kopecz and A. Meister, On the stability of unconditionally positive and linear invariants preserving time integration schemes. SIAM J. Numer. Anal. 60 (2022) 3029–3051. [Google Scholar]
- T. Izgin, S. Kopecz and A. Meister, A stability analysis of modified Patankar–Runge–Kutta methods for a nonlinear production-destruction system. Preprint arXiv:2210.11845 (2022). [Google Scholar]
- S. Kopecz and A. Meister, On order conditions for modified Patankar–Runge–Kutta schemes. Appl. Numer. Math. 123 (2018) 159–179. [CrossRef] [MathSciNet] [Google Scholar]
- S. Kopecz and A. Meister, Unconditionally positive and conservative third order modified Patankar–Runge–Kutta discretizations of production–destruction systems. BIT Numer. Math. 58 (2018) 691–728. [CrossRef] [Google Scholar]
- S. Kopecz and A. Meister, On the existence of three-stage third-order modified Patankar–Runge–Kutta schemes. Numer. Algorithms 81 (2019) 1473–1484. [CrossRef] [MathSciNet] [Google Scholar]
- D.G. Luenberger and D.C. Luenberger, Introduction to Dynamic Systems – Theory, Models, and Applications. Wiley, New York (1979). [Google Scholar]
- A. Meister and S. Ortleb, A positivity preserving and well-balanced DG scheme using finite volume subcells in almost dry regions. Appl. Math. Comput. 272 (2016) 259–273. [CrossRef] [MathSciNet] [Google Scholar]
- P. Öffner and D. Torlo, Arbitrary high-order, conservative and positivity preserving Patankar-type deferred correction schemes. Appl. Numer. Math. 153 (2020) 15–34. [CrossRef] [MathSciNet] [Google Scholar]
- J. Pan, Y.-Y. Chen and L.-S. Fan, Second-order unconditional positive preserving schemes for non-equilibrium reactive flows with mass and mole balance. J. Comput. Phys. 441 (2021) 110477. [CrossRef] [Google Scholar]
- S.V. Patankar, Numerical Heat Transfer and Fluid Flow. Series in Computational Methods in Mechanics and Thermal Sciences. Hemisphere Pub. Corp. New York, Washington (1980). [Google Scholar]
- C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77 (1988) 439–471. [Google Scholar]
- E.M. Stein and R. Shakarchi, Complex Analysis. Vol. 2 of Princeton Lectures in Analysis. Princeton University Press, Princeton, NJ (2003). [Google Scholar]
- A. Stuart and A.R. Humphries, Dynamical Systems and Numerical Analysis. Vol. 2. Cambridge University Press (1998). [Google Scholar]
- E.C. Titchmarsh, The Theory of Functions, 2nd edition. Oxford University Press, Oxford (1939). [Google Scholar]
- D. Torlo, P. Öffner and H. Ranocha, Issues with positivity-preserving Patankar-type schemes. Appl. Numer. Math. 182 (2022) 117–147. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.