Open Access
Issue
ESAIM: M2AN
Volume 57, Number 3, May-June 2023
Page(s) 1445 - 1472
DOI https://doi.org/10.1051/m2an/2023018
Published online 18 May 2023
  1. R. Bürger and K.H. Karlsen, On a diffusively corrected kinematic-wave traffic model with changing road surface conditions. Math. Models Methods Appl. Sci. 13 (2003) 1767–1799. [Google Scholar]
  2. R. Bürger, K.H. Karlsen, N.H. Risebro and J.D. Towers, Well-posedness in BVt and convergence of a difference scheme for continuous sedimentation in ideal clarifier-thickener units. Numer. Math. 97 (2004) 25–65. [Google Scholar]
  3. R. Bürger, K.H. Karlsen and N.H. Risebro, A relaxation scheme for continuous sedimentation in ideal clarifier-thickener units. Comput. Math. Appl. 50 (2005) 993–1009. [CrossRef] [MathSciNet] [Google Scholar]
  4. R. Bürger, K.H. Karlsen and J.D. Towers, A model of continuous sedimentation of floculated suspensions in clarifier-thickener units. SIAM J. Appl. Math. 65 (2005) 882–940. [Google Scholar]
  5. R. Bürger, R. Ruiz, K. Schneider and M. Sepúlveda, Fully adaptive multiresolution schemes for strongly degenerate parabolic equations with discontinuous flux. ESAIM: Math. Model. Numer. Anal. 42 (2008) 535–563. [CrossRef] [EDP Sciences] [Google Scholar]
  6. M.C. Bustos, F. Concha, R. Bürger and E.M. Tory, Sedimentation and Thickening Phenomenological Foundation and Mathematical Theory. Springer, New York (1999). [Google Scholar]
  7. M.J. Castro, U.S. Fjordholm, S. Mishra and C. Pares, Entropy conservative and entropy stable schemes for nonconservative hyperbolic systems. SIAM J. Numer. Anal. 51 (2013) 1371–1391. [Google Scholar]
  8. N. Chatterjee and U.S. Fjordholm, Convergence of second-order, entropy stable methods for multi-dimensional conservation law. ESAIM: M2AN 54 (2020) 1415–1428. [CrossRef] [EDP Sciences] [Google Scholar]
  9. G. Chavent and J. Jaffre, Mathematical Models and Finite Elements for Reservoir Simulation: Single Phase, Multiphase and Multicomponent Flows Through Porous Media. Elsevier, Amsterdam (1986). [Google Scholar]
  10. R. Diaz-Adame and S. Jerez, Convergence of time-splitting approximations for degenerate convection-diffusion equations with a random source. J. Numer. Math. 29 (2021) 23–38. [Google Scholar]
  11. R. Diaz-Adame, S. Jerez and H. Carrillo, Fast and optimal WENO schemes for degenerate parabolic conservation laws. J. Sci. Comput. 90 (2022) 22. [Google Scholar]
  12. M.S. Espedal and K.H. Karlsen, Numerical solution of reservoir flow models based on large time step operator splitting algorithms. C.I.M.E. Lecture Notes (1999). [Google Scholar]
  13. S. Evje and K.H. Karlsen, Monotone difference approximations of BVt solutions to degenerate convection-diffusion equations. SIAM J. Numer. Anal. 37 (2000) 1838–1860. [Google Scholar]
  14. U.S. Fjordholm, High-order accurate entropy stable numercial schemes for hyperbolic conservation laws. Ph.D. thesis, ETH Zurich (2013). [Google Scholar]
  15. U.S. Fjordholm, S. Mishra and E. Tadmor, Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws. SIAM J. Numer. Anal. 50 (2012) 544–573. [Google Scholar]
  16. H. Hanche-Olsen and H. Holden, The Kolmogorov-Riesz compactness theorem. Expo. Math. 28 (2010) 385–394. [CrossRef] [MathSciNet] [Google Scholar]
  17. S. Jerez and C. Pares, Entropy stable schemes for degenerate convection-diffusion equations. SIAM J. Numer. Anal. 55 (2017) 240–264. [Google Scholar]
  18. H.K. Karlsen, N.H. Risebro and J.D. Towers, On a nonlinear degenerate parabolic equation with a discontinuous coefficient. Electron. J. Differ. Equ. 2002 (2002) 1–23. [Google Scholar]
  19. K.H. Karlsen, N.H. Risebro and J.D. Towers, Upwind difference approximations for degenerate parabolic convection–diffusion equations with a discontinuous coefficient. IMA J. Numer. Anal. 22 (2002) 623–664. [CrossRef] [MathSciNet] [Google Scholar]
  20. K.H. Karlsen, C. Klingenberg and N.H. Risebro, A relaxation scheme for conservation laws with a discontinuous coefficient. Math. Comput. 73 (2003) 1235–1259. [Google Scholar]
  21. K.H. Karlsen, N.H. Risebro and J.D. Towers, L1 stability for entropy solutions of nonlinear degenerate parabolic convection-diffusion equations with discontinuous coefficients. Skr. K. Nor. Vidensk. Selsk. (2003) 1–49. [Google Scholar]
  22. S. Mishra, Convergence of upwind finite difference schemes for a scalar conservation law with indefinite discontinuities in the flux function. SIAM J. Numer. Anal. 43 (2005) 559–577. [Google Scholar]
  23. F. Murat, Compacit? Par compensation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 5 (1978) 489–507. [MathSciNet] [Google Scholar]
  24. C.W. Shu, Essentially Non-oscillatory and Weighted Essentially Non-oscillatory Schemes for Hyperbolic Conservation Laws. Springer, Berlin Heidelberg (1998). [Google Scholar]
  25. E. Tadmor, The numerical viscosity of entropy stable schemes for systems of conseration laws. Math. Comput. 49 (1987) 91–103. [Google Scholar]
  26. E. Tadmor, Approximate solutions of nonlinear conservation laws and related equations, in Recent Advances in Partial Differential Equations, AMS, Providence, R (1998) 325–368. [Google Scholar]
  27. E. Tadmor, Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer. 12 (2003) 451–512. [CrossRef] [MathSciNet] [Google Scholar]
  28. L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear Analysis and Mechanics: Heriot-Watt Symposium. Vol. IV. Pitman, Boston, MA (1979) 136–212. [Google Scholar]
  29. J.D. Towers, A difference scheme for conservation laws with a discontinuous flux: the nonconvex case. SIAM J. Numer. Anal. 39 (2001) 1197–1218. [Google Scholar]
  30. G. Wang and C. Ge, Semidiscrete central-upwind scheme for conservation laws with a discontinuous flux function in space. Appl. Math. Comput. 217 (2011) 7065–7073. [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you