Open Access
Issue
ESAIM: M2AN
Volume 57, Number 3, May-June 2023
Page(s) 1225 - 1255
DOI https://doi.org/10.1051/m2an/2023008
Published online 08 May 2023
  1. G. Allaire, Numerical Analysis and Optimization: An Introduction to Mathematical Modelling and Numerical Simulation. Oxford University Press (2007). [Google Scholar]
  2. T. Bellotti, L. Gouarin, B. Graille and M. Massot, High accuracy analysis of adaptive multiresolution-based lattice Boltzmann schemes via the equivalent equations. SMAI J. Comput. Math. 8 (2022) 161–199. [CrossRef] [MathSciNet] [Google Scholar]
  3. T. Bellotti, B. Graille and M. Massot, Finite difference formulation of any lattice Boltzmann scheme. Numer. Math. 152 (2022) 1–40. [CrossRef] [MathSciNet] [Google Scholar]
  4. B. Boghosian, F. Dubois, B. Graille, P. Lallemand and M.-M. Tekitek, Curious convergence properties of lattice boltzmann schemes for diffusion with acoustic scaling. Commun. Comput. Phys. 23 (2018) 1263–1278. [CrossRef] [MathSciNet] [Google Scholar]
  5. F. Bouchut, F.R. Guarguaglini and R. Natalini, Diffusive BGK approximations for nonlinear multidimensional parabolic equations. Indiana Univ. Math. J. 49 (2000) 723–749. [CrossRef] [Google Scholar]
  6. J.W. Brewer, J.W. Bunce and F.S. Van Vleck, Linear Systems Over Commutative Rings. CRC Press (1986). [Google Scholar]
  7. A. Caiazzo, M. Junk and M. Rheinländer, Comparison of analysis techniques for the lattice Boltzmann method. Comput. Math. Appl. 58 (2009) 883–897. [CrossRef] [MathSciNet] [Google Scholar]
  8. R. Carpentier, A. de La Bourdonnaye and B. Larrouturou, On the derivation of the modified equation for the analysis of linear numerical methods. ESAIM: Math. Modell. Numer. Anal. 31 (1997) 459–470. [CrossRef] [EDP Sciences] [Google Scholar]
  9. S. Chapman and T.G. Cowling, The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases. Cambridge University Press (1990). [Google Scholar]
  10. S. Chen and G.D. Doolen, Lattice Boltzmann method for fluid flows. Ann. Rev. Fluid Mech. 30 (1998) 329–364. [CrossRef] [Google Scholar]
  11. S.S. Cheng, Partial Difference Equations. Vol. 3. CRC Press (2003). [CrossRef] [Google Scholar]
  12. S. Dellacherie, Construction and analysis of lattice Boltzmann methods applied to a 1D convection-diffusion equation. Acta Appl. Math. 131 (2014) 69–140. [CrossRef] [MathSciNet] [Google Scholar]
  13. D. D’Humières, Generalized Lattice-Boltzmann Equations. American Institute of Aeronautics and Astronautics, Inc. (1992) 450–458. [Google Scholar]
  14. J. Ding and A. Zhou, Eigenvalues of rank-one updated matrices with some applications. Appl. Math. Lett. 20 (2007) 1223–1226. [CrossRef] [MathSciNet] [Google Scholar]
  15. F. Dubois, Equivalent partial differential equations of a lattice Boltzmann scheme. Comput. Math. Appl. 55 (2008) 1441–1449. [CrossRef] [MathSciNet] [Google Scholar]
  16. F. Dubois, General third order Chapman-Enskog expansion of lattice Boltzmann schemes, in 16th International Conference for Mesoscopic Methods in Engineering and Science, Edinburgh, 22–26 July 2019. Edimburgh, United Kingdom (July, 2019). [Google Scholar]
  17. F. Dubois, Nonlinear fourth order Taylor expansion of lattice Boltzmann schemes. Asymptotic Anal. 127 (2021) 297–337. [Google Scholar]
  18. F. Dubois and P. Lallemand, Towards higher order lattice Boltzmann schemes. J. Stat. Mech.: Theory Exp. 2009 6 (2009) P06006. [Google Scholar]
  19. F. Dubois and P. Lallemand, Quartic parameters for acoustic applications of lattice Boltzmann scheme. Comput. Math. Appl. 61 (2011) 3404–3416. [CrossRef] [MathSciNet] [Google Scholar]
  20. F. Dubois, B. Graille and S.R. Rao, A notion of non-negativity preserving relaxation for a mono-dimensional three velocities scheme with relative velocity. J. Comput. Sci. 47 (2020) 101181. [CrossRef] [MathSciNet] [Google Scholar]
  21. T. Février, Extension et analyse des schémas de Boltzmann sur réseau: les schémas à vitesse relative. Ph.D. thesis, Université Paris Sud-Paris XI (2014). [Google Scholar]
  22. R. Fučk and R. Straka, Equivalent finite difference and partial differential equations for the lattice Boltzmann method. Comput. Math. Appl. 90 (2021) 96–103. [CrossRef] [MathSciNet] [Google Scholar]
  23. Z. Guo and C. Shu, Lattice Boltzmann Method and its Application in Engineering. Vol. 3. World Scientific (2013). [CrossRef] [Google Scholar]
  24. B. Gustafsson, H.-O. Kreiss and J. Oliger, Time Dependent Problems and Difference Methods. Vol. 24. John Wiley & Sons (1995). [Google Scholar]
  25. M. Hénon, Viscosity of a lattice gas, in Lattice Gas Methods for Partial Differential Equations. CRC Press (1987) 179–207. [Google Scholar]
  26. F.J. Higuera and J. Jiménez, Boltzmann approach to lattice gas simulations. EPL (Europhys. Lett.) 9 (1989) 663. [CrossRef] [Google Scholar]
  27. R.A. Horn and C.R. Johnson, Matrix Analysis. Cambridge University Press (2012). [CrossRef] [Google Scholar]
  28. K. Huang, Statistical Mechanics, 2nd edition. John Wiley & Sons (1987). [Google Scholar]
  29. W.P. Johnson, The curious history of Faà di Bruno’s formula. Am. Math. Monthly 109 (2002) 217–234. [Google Scholar]
  30. M. Junk and Z. Yang, Convergence of lattice Boltzmann methods for Navier-Stokes flows in periodic and bounded domains. Numer. Math. 112 (2009) 65–87. [CrossRef] [MathSciNet] [Google Scholar]
  31. M. Junk and W.-A. Yong, Rigorous Navier-Stokes limit of the lattice Boltzmann equation. Asymptotic Anal. 35 (2003) 165–185. [MathSciNet] [Google Scholar]
  32. M. Junk, A. Klar and L.-S. Luo, Asymptotic analysis of the lattice Boltzmann equation. J. Comput. Phys. 210 (2005) 676–704. [CrossRef] [MathSciNet] [Google Scholar]
  33. E.I. Jury, Theory and Application of the z-Transform Method. Krieger Publishing Co. (1964). [Google Scholar]
  34. C. Kassel, Quantum Groups, 1st edition. Graduate Texts in Mathematics. Springer-Verlag, New York (1995). [CrossRef] [Google Scholar]
  35. T. Krüger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva and E.M. Viggen, The lattice Boltzmann method. Springer Int. Publ. 10 (2017) 1–15. [Google Scholar]
  36. P. Lallemand and L.-S. Luo, Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E 61 (2000) 6546. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  37. S. Lang, Algebra, 3rd edition. Graduate Texts in Mathematics. Springer-Verlag, New York (2002). [CrossRef] [Google Scholar]
  38. P.D. Lax and R.D. Richtmyer, Survey of the stability of linear finite difference equations. Commun. Pure Appl. Math. 9 (1956) 267–293. [CrossRef] [Google Scholar]
  39. G.R. McNamara and G. Zanetti, Use of the Boltzmann equation to simulate lattice-gas automata. Phys. Rev. Lett. 61 (1988) 2332. [CrossRef] [PubMed] [Google Scholar]
  40. K.S. Miller, An Introduction to the Calculus of Finite Differences and Difference Equations. Dover Publications (1960). [Google Scholar]
  41. A.A. Monforte and M. Kauers, Formal Laurent series in several variables. Expositiones Math. 31 (2013) 350–367. [CrossRef] [MathSciNet] [Google Scholar]
  42. I. Niven, Formal power series. Am. Math. Monthly 76 (1969) 871–889. [CrossRef] [Google Scholar]
  43. Y.-H. Qian and Y. Zhou, Higher-order dynamics in lattice-based models using the Chapman-Enskog method. Phys. Rev. E 61 (2000) 2103. [CrossRef] [PubMed] [Google Scholar]
  44. M.K. Rheinländer, Analysis of lattice-Boltzmann methods: asymptotic and numeric investigation of a singularly perturbed system. Ph.D. thesis (2007). [Google Scholar]
  45. S. Roman, The Umbral Calculus. Dover Publications (2005). [Google Scholar]
  46. S. Simonis, M. Frank and M.J. Krause, On relaxation systems and their relation to discrete velocity Boltzmann models for scalar advection–diffusion equations. Philos. Trans. R. Soc. A 378 (2020) 20190400. [CrossRef] [PubMed] [Google Scholar]
  47. G. Stewart, On the adjugate matrix. Linear Algebra App. 283 (1998) 151–164. [CrossRef] [Google Scholar]
  48. J.C. Strikwerda, Finite Difference Schemes and Partial Differential Equations. SIAM (2004). [Google Scholar]
  49. S. Succi, The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond. Oxford University Press (2001). [Google Scholar]
  50. S. Suga, An accurate multi-level finite difference scheme for 1D diffusion equations derived from the lattice Boltzmann method. J. Stat. Phys. 140 (2010) 494–503. [CrossRef] [MathSciNet] [Google Scholar]
  51. P. Van Leemput, M. Rheinländer and M. Junk, Smooth initialization of lattice Boltzmann schemes. Comput. Math. App. 58 (2009) 867–882. [Google Scholar]
  52. R.F. Warming and B. Hyett, The modified equation approach to the stability and accuracy analysis of finite-difference methods. J. Comput. Phys. 14 (1974) 159–179. [CrossRef] [MathSciNet] [Google Scholar]
  53. W.-A. Yong, W. Zhao and L.-S. Luo, Theory of the lattice Boltzmann method: derivation of macroscopic equations via the Maxwell iteration. Phys. Rev. E 93 (2016) 033310. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  54. M. Zhang, W. Zhao and P. Lin, Lattice Boltzmann method for general convection-diffusion equations: MRT model and boundary schemes. J. Comput. Phys. 389 (2019) 147–163. [CrossRef] [MathSciNet] [Google Scholar]
  55. W. Zhao and W.-A. Yong, Maxwell iteration for the lattice Boltzmann method with diffusive scaling. Phys. Rev. E 95 (2017) 033311. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  56. D. Zwillinger, CRC Standard Mathematical Tables and Formulas. Chapman and Hall – CRC (2018). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you