Open Access
Volume 57, Number 3, May-June 2023
Page(s) 1257 - 1296
Published online 12 May 2023
  1. R. Adams and J.F. Fournier, Sobolev Spaces. Vol. 140 of Pure and Applied Mathematics , 2nd edition. Elsevier (2003). [Google Scholar]
  2. M. Ainsworth and G. Fu, Fully computable a posteriori error bounds for hybridizable discontinuous Galerkin finite element approximations. J. Sci. Comput. 77 (2018) 443–466. [CrossRef] [MathSciNet] [Google Scholar]
  3. S. Badia and R. Codina, Unified stabilized finite element formulations for the Stokes and the Darcy problems. SIAM J. Numer. Anal. 47 (2009) 1971–2000. [Google Scholar]
  4. J. Bear and A.H.-D. Cheng, Modeling Groundwater Flow and Contaminant Transport. Vol. 23 of Theory and Applications of Transport in Porous Media. Springer (2010). [Google Scholar]
  5. G.S. Beavers and D.D. Joseph, Boundary conditions at a naturally impermeable wall. J. Fluid. Mech. 30 (1967) 197–207. [Google Scholar]
  6. S.C. Brenner, Poincaré-Friedrichs inequalities for piecewise H1 functions. SIAM J. Numer. Anal. 41 (2003) 306–324. [Google Scholar]
  7. S.C. Brenner, Korn’s inequalities for piecewise H1 vector fields. Math. Comp. 73 (2004) 1067–1087. [Google Scholar]
  8. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, 3rd edition. Springer (2010). [Google Scholar]
  9. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Vol. 15 of Springer Series in Computational Mathematics. Springer-Verlag, New York Inc. (1991). [CrossRef] [Google Scholar]
  10. A.N. Brooks and T.J.R. Hughes, Streamline upwind Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equation. Comput. Meth. Appl. Mech. Eng. 32 (1982) 199–259. [CrossRef] [Google Scholar]
  11. E. Burman and P. Hansbo, Stabilized Crouzeix-Raviart element for the Darcy-Stokes problem. Numer. Meth. Part. D. E. 21 (2005) 986–997. [CrossRef] [Google Scholar]
  12. J. Camaño, G.N. Gatica, R. Oyarzúa, R. Ruiz-Baier and P. Venegas, New fully-mixed finite element methods for the Stokes-Darcy coupling. Comput. Method. Appl. M. 295 (2015) 362–395. [CrossRef] [Google Scholar]
  13. Y. Cao, M. Gunzburger, X. Hu, F. Hua, X. Wang and W. Zhao, Finite element approximations for Stokes-Darcy flow with Beavers-Joseph interface conditions. SIAM J. Numer. Anal. 47 (2010) 4239–4256. [CrossRef] [MathSciNet] [Google Scholar]
  14. A. Çeşmelioğlu and B. Rivière, Existence of a weak solution for the fully coupled Navier–Stokes/Darcy–transport problem. J. Differ. Equ. 252 (2012) 4138–4175. [CrossRef] [Google Scholar]
  15. A. Cesmelioglu and P. Chidyagwai, Numerical analysis of the coupling of free fluid with a poroelastic material. Numer. Meth. Part. D. E. 36 (2020) 463–494. [CrossRef] [Google Scholar]
  16. A. Cesmelioglu and S. Rhebergen, A compatible embedded-hybridized discontinuous Galerkin method for the Stokes–Darcy-transport problem. Commun. Appl. Math. Comput. 4 (2022) 293–318. [CrossRef] [MathSciNet] [Google Scholar]
  17. A. Cesmelioglu, S. Rhebergen and G.N. Wells, An embedded-hybridized discontinuous Galerkin method for the coupled Stokes-Darcy system. J. Comput. Appl. Math. 367 (2020) 112476. [Google Scholar]
  18. N. Chaabane, V. Girault, C. Puelz and B. Riviere, Convergence of IPDG for coupled time-dependent Navier-Stokes and Darcy equations. J. Comput. Appl. Math. 324 (2017) 25–48. [CrossRef] [MathSciNet] [Google Scholar]
  19. B. Cockburn and C.-W. Shu, The local discontinuous Galerkin finite element method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35 (1998) 2440–2463. [CrossRef] [MathSciNet] [Google Scholar]
  20. B. Cockburn, J. Gopalakrishnan and R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47 (2009) 1319–1365. [Google Scholar]
  21. C. D’Angelo and P. Zunino, Robust numerical approximation of coupled Stokes’ and Darcy’s flows applied to vascular hemodynamics and biochemical transport. ESAIM: M2AN 45 (2011) 447–476. [CrossRef] [EDP Sciences] [Google Scholar]
  22. C. Dawson, S. Sun and M.F. Wheeler, Compatible algorithms for coupled flow and transport. Comput. Methods Appl. Mech. Eng. 193 (2004) 2565–2580. [CrossRef] [Google Scholar]
  23. D.A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous GAlerkin Methods. Vol. 69 of Mathématiques et Applications. Springer-Verlag, Berlin Heidelberg (2012). [CrossRef] [Google Scholar]
  24. M. Discacciati, Domain decomposition methods for the coupling of surface and groundwater flows. Ph.D. thesis, Ecole Polytechnique Federale de Sausanne, Sausanne, Switzerland (2004). [Google Scholar]
  25. M. Discacciati, E. Miglio and A. Quarteroni, Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math. 43 (2002) 57–74. [Google Scholar]
  26. J. Douglas Jr., R.E. Ewing and M.F. Wheeler, A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media. RAIRO. Anal. numér. 17 (1983) 249–265. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  27. A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements. Vol. 159 of Applied Mathematical Sciences. Springer-Verlag, New York (2004). [CrossRef] [Google Scholar]
  28. V. Ervin, M. Kubacki, W. Layton, M. Moraiti, Z. Si and C. Trenchea, Partitioned penalty methods for the transport equation in the evolutionary Stokes–Darcy–transport problem. Numer. Meth. Part. D. E. 35 (2019) 349–374. [CrossRef] [Google Scholar]
  29. G.N. Gatica, S. Meddahi and R. Oyarzúa, A conforming mixed finite-element method for the coupling of fluid flow with porous media flow. IMA J. Numer. Anal. 29 (2009) 86–108. [Google Scholar]
  30. V. Girault and B. Rivière, DG approximation of coupled Navier-Stokes and Darcy equations by Beaver–Joseph–Saffman interface condition. SIAM J. Numer. Anal. 47 (2009) 2052–2089. [CrossRef] [MathSciNet] [Google Scholar]
  31. J. Guzmán, C.-W. Shu and F. Sequeira, H(div) conforming and DG methods for incompressible Euler’s equations. IMA J. Numer. Anal. 37 (2016) 1733–1771. [Google Scholar]
  32. P. Hansbo and M.G. Larson, Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche’s method. Comput. Methods Appl. Mech. Eng. 191 (2002) 1895–1908. [CrossRef] [Google Scholar]
  33. N. Hanspal, A. Waghode, V. Nassehi and R. Wakeman, Numerical analysis of coupled stokes/darcy flows in industrial filtrations. Transp. Porous Media 64 (2006) 1573–1634. [CrossRef] [Google Scholar]
  34. G. Kanschat and B. Rivière, A strongly conservative finite element method for the coupling of Stokes and Darcy flow. J. Comput. Phys. 229 (2010) 5933–5943. [CrossRef] [MathSciNet] [Google Scholar]
  35. W. Layton, Introduction to the Numerical Analysis of Incompressible Viscous Flows. Society for Industrial and Applied Mathematics, Philadelphia, PA (2008). [CrossRef] [Google Scholar]
  36. W. Layton, F. Schieweck and I. Yotov, Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40 (2002) 2195–2218. [CrossRef] [MathSciNet] [Google Scholar]
  37. J. Li, B. Riviere and N. Walkington, Convergence of a high order method in time and space for the miscible displacement equations. ESAIM: M2AN 49 (2015) 953–976. [CrossRef] [EDP Sciences] [Google Scholar]
  38. J. Lohrenz, B.G. Bray and C.R. Clark, Calculating viscosities of reservoir fluids from their compositions. J. Petrol. Technol. 16 (1964) 1171–1176. [CrossRef] [Google Scholar]
  39. A. Márquez, S. Meddahi and F.J. Sayas, Strong coupling of finite element methods for the Stokes-Darcy problem. IMA J. Numer. Anal. 35 (2015) 969–988. [CrossRef] [MathSciNet] [Google Scholar]
  40. N.C. Nguyen, J. Peraire and B. Cockburn, An implicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations. J. Comput. Phys. 228 (2009) 3232–3254. [CrossRef] [MathSciNet] [Google Scholar]
  41. B. Rivière, Analysis of a discontinuous finite element method for the coupled Stokes and Darcy problems. J. Sci. Comput. 22 (2005) 479–500. [CrossRef] [Google Scholar]
  42. B. Rivière, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations. Vol. 35 of Frontiers in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM) Philadelphia (2008). [Google Scholar]
  43. B. Riviere, Discontinuous finite element methods for coupled surface–subsurface flow and transport problems, in Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations: 2012 John H Barrett Memorial Lectures, edited by X. Feng, O. Karakashian and Y. Xing. Springer International Publishing, Cham (2014) 259–279. [CrossRef] [Google Scholar]
  44. B. Rivière and N.J. Walkington, Convergence of a discontinuous Galerkin method for the miscible displacement equation under low regularity. SIAM J. Numer. Anal. 49 (2011) 1085–1110. [CrossRef] [MathSciNet] [Google Scholar]
  45. H. Rui and J. Zhang, A stabilized mixed finite element method for coupled Stokes and Darcy flows with transport. Comput. Methods Appl. Mech. Eng. 315 (2017) 169–189. [CrossRef] [Google Scholar]
  46. P. Saffman, On the boundary condition at the surface of a porous media. Stud. Appl. Math. 50 (1971) 292–315. [Google Scholar]
  47. J. Schöberl, NETGEN an advancing front 2D/3D-mesh generator based on abstract rules. Comput. Visual. Sci. 1 (1997) 41–52. [CrossRef] [Google Scholar]
  48. J. Schöberl, C++11 implementation of finite elements in NGSolve. Technical Report ASC Report 30/2014, Institute for Analysis and Scientific Computing, Vienna University of Technology (2014). [Google Scholar]
  49. S. Sun, B. Rivière and M.F. Wheeler, A combined mixed finite element and discontinuous Galerkin method for miscible displacement problem in porous media, in Recent Progress in Computational and Applied PDES. Springer US, Boston, MA (2002) 323–351. [CrossRef] [Google Scholar]
  50. D. Vassilev and I. Yotov, Coupling Stokes-Darcy flow with transport. SIAM J. Sci. Comput. 31 (2009) 3661–3684. [CrossRef] [MathSciNet] [Google Scholar]
  51. G.N. Wells, Analysis of an interface stabilized finite element method: the advection-diffusion-reaction equation. SIAM J. Numer. Anal. 49(1) (2011) 87–109. [CrossRef] [MathSciNet] [Google Scholar]
  52. J. Zhang, H. Rui and Y. Cao, A partitioned method with different time steps for coupled stokes and darcy flows with transport. Int. J. Numer. Anal. Model. 16 (2019) 463–498. [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you