Open Access
Volume 57, Number 4, July-August 2023
Page(s) 2159 - 2191
Published online 03 July 2023
  1. N. Agarwal and G. Bhutani, LES modelling of multiphase turbulent flows in bubble columns using an adaptive-mesh finite element method. Chem. Eng. Res. Des. 180 (2022) 90–108. [CrossRef] [Google Scholar]
  2. M. Ainsworth and J.T. Oden, A posteriori error estimation in finite element analysis. Comput. Methods Appl. Mech. Eng. 142 (1997) 1–88. [Google Scholar]
  3. E. Aristodemou, L. Mottet, A. Constantinou and C. Pain, Turbulent flows and pollution dispersion around tall buildings using adaptive large eddy simulation (LES). Buildings 10 (2020) 127. [CrossRef] [Google Scholar]
  4. A. Bergam, C. Bernardi and Z. Mghazli, A posteriori analysis of the finite element discretization of some parabolic equations. Math. Comput. 74 (2005) 1117–1138. [Google Scholar]
  5. C. Bernardi and T. Sayah, A posteriori error analysis of the time dependent Navier-Stokes equations with mixed boundary conditions. SeMA J. 69 (2015) 1–23. [CrossRef] [MathSciNet] [Google Scholar]
  6. C. Bernardi and T. Sayah, A posteriori error analysis of the time-dependent Stokes equations with mixed boundary conditions. IMA J. Numer. Anal. 35 (2015) 179–198. [Google Scholar]
  7. C. Bernardi and E. Süli, Time and space adaptivity for the second-order wave equation. Math. Models Methods Appl. Sci. 15 (2005) 199–225. [Google Scholar]
  8. C. Bernardi and R. Verfürth, A posteriori error analysis of the fully discretized time-dependent Stokes equations. ESAIM: Math. Modell. Numer. Anal. 38 (2004) 437–455. [CrossRef] [EDP Sciences] [Google Scholar]
  9. C. Bernardi, Y. Maday and F. Rapetti, Discrétisations variationnelles de problèmes aux limites elliptiques. Vol. 45. Springer Science & Business Media (2004). [Google Scholar]
  10. L.C. Berselli, T. Iliescu and W.J. Layton, Mathematics of Large Eddy Simulation of Turbulent Flows. Scientific Computation. Springer, Berlin (2006). [Google Scholar]
  11. F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models. Vol. 183. Springer Science & Business Media (2012). [Google Scholar]
  12. P. Ciarlet Jr., Analysis of the Scott-Zhang interpolation in the fractional order Sobolev spaces. J. Numer. Math. 21 (2013) 173–180. [MathSciNet] [Google Scholar]
  13. P. Clément, Approximation by finite element functions using local regularization. Rev. Franc. Automat. Inf. Rech. Oper. R 9 (1975) 77–84. [Google Scholar]
  14. M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. Revue française d’automatique, informatique, recherche operationnelle. Mathématique 7 (1973) 33–75. [CrossRef] [EDP Sciences] [Google Scholar]
  15. C.A. Desoer and M. Vidyasagar, Feedback Systems: Input-Output Properties. Academic Press, New York (1975). [Google Scholar]
  16. A. Ern and M. Vohralk, A posteriori error estimation based on potential and flux reconstruction for the heat equation. SIAM J. Numer. Anal. 48 (2010) 198–223. [CrossRef] [MathSciNet] [Google Scholar]
  17. M. Germano, U. Piomelli, P. Moin and W.H. Cabot, A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3 (1991) 1760–1765. [CrossRef] [Google Scholar]
  18. V. Girault and P.-A. Raviart, Element Methods for Navier–Stokes Equations. Theory and Algorithms. Springer (1986). [Google Scholar]
  19. A. Hauser and G. Wittum, Adaptive large eddy simulation. Comput. Vis. Sci. 17 (2015) 295–304. [CrossRef] [MathSciNet] [Google Scholar]
  20. F. Hecht, New development in FreeFem++. J. Numer. Math. 20 (2012) 251–266. [Google Scholar]
  21. V. John, Large Eddy Simulation of Turbulent Incompressible Flows. Springer (2004). [CrossRef] [Google Scholar]
  22. P. Ladevèze, Constitutive relation error estimators for time-dependent non-linear FE analysis. Comput. Methods Appl. Mech. Eng. 188 (2000) 775–788. [CrossRef] [Google Scholar]
  23. G. Matthies and L. Tobiska, Inf-sup stable non-conforming finite elements of arbitrary order on triangles. Numer. Math. 102 (2005) 293–309. [CrossRef] [MathSciNet] [Google Scholar]
  24. G. Nassreddine, Estimation a posteriori pour la simulation des grandes échelles en mécanique des fluides incompressibles. Ph.D. thesis, Université Paris-Nord – Paris XIII (2020). [Google Scholar]
  25. G. Nassreddine and T. Sayah, New results for the a posteriori estimates of the two dimensional time dependent Navier-Stokes equation. Int. J. Mech. 11 (2017) 155–165. [Google Scholar]
  26. D. Pavlidis and D. Lathouwers, Fluid flow and heat transfer investigation of pebble bed reactors using mesh-adaptive LES. Nucl. Eng. Des. 264 (2013) 161–167. [CrossRef] [Google Scholar]
  27. P. Sagaut, Large Eddy Simulation for Incompressible Flows. An Introduction. Scientific Computation, 3rd edition. Springer, Berlin (2006). [Google Scholar]
  28. C. Taylor and P. Hood, A numerical solution of the Navier-Stokes equations using the finite element technique. Comput. Fluids 1 (1973) 73–100. [CrossRef] [MathSciNet] [Google Scholar]
  29. R. Tenam, Theory and Numerical Analysis of the Navier-Stokes Equations. North-Holland, Amsterdam (1977). [Google Scholar]
  30. R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley & Teubner, Stuttgart (1996). [Google Scholar]
  31. R. Verfürth, A posteriori error estimates for finite element discretizations of the heat equation. Calcolo 40 (2003) 195–212. [CrossRef] [MathSciNet] [Google Scholar]
  32. M. Vidyasagar, Nonlinear Systems Analysis. Prentice-Hall Inc., Hoboken, NJ (1993). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you