Open Access
Issue |
ESAIM: M2AN
Volume 57, Number 4, July-August 2023
|
|
---|---|---|
Page(s) | 2131 - 2158 | |
DOI | https://doi.org/10.1051/m2an/2023035 | |
Published online | 03 July 2023 |
- S. Alesker, S. Dar and V. Milman, A remarkable measure preserving diffeomorphism between two convex bodies in Rn. Geom. Dedicata 74 (1999) 201–212. [CrossRef] [MathSciNet] [Google Scholar]
- L. Ambrosio, Transport equation and Cauchy problem for BV vector fields. Invent. Math. 158 (2004) 227–260. [CrossRef] [MathSciNet] [Google Scholar]
- L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd edition. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (2008). [Google Scholar]
- E. Bertolazzi and G. Manzini, A cell-centered second-order accurate finite volume method for convection-diffusion problems on unstructured meshes. Math. Models Methods Appl. Sci. 14 (2004) 1235–1260. [CrossRef] [MathSciNet] [Google Scholar]
- S. Bianchini, M. Colombo, G. Crippa and L.V. Spinolo, Optimality of integrability estimates for advection–diffusion equations. NoDEA Nonlinear Differ. Equ. Appl. 24 (2017) 19. [CrossRef] [Google Scholar]
- V.I. Bogachev, N.V. Krylov, M. Röckner and S.V. Shaposhnikov, Fokker–Planck–Kolmogorov Equations. Vol. 207 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2015). [CrossRef] [Google Scholar]
- F. Bouchut and G. Crippa, Lagrangian flows for vector fields with gradient given by a singular integral. J. Hyperbolic Differ. Equ. 10 (2013) 235–282. [CrossRef] [MathSciNet] [Google Scholar]
- F. Boyer, Analysis of the upwind finite volume method for general initial- and boundary-value transport problems. IMA J. Numer. Anal. 32 (2012) 1404–1439. [Google Scholar]
- Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math. 44 (1991) 375–417. [CrossRef] [MathSciNet] [Google Scholar]
- C.L. Bris and P.-L. Lions, Parabolic Equations with Irregular Data and Related Issues. De Gruyter (2019). [CrossRef] [Google Scholar]
- Z.Q. Cai, J. Mandel and S. McCormick, The finite volume element method for diffusion equations on general triangulations. SIAM J. Numer. Anal. 28 (1991) 392–402. [CrossRef] [MathSciNet] [Google Scholar]
- A. Cheskidov and X. Luo, Nonuniqueness of weak solutions for the transport equation at critical space regularity. Ann. PDE 7 (2021) 45. [CrossRef] [Google Scholar]
- G. Crippa, C. Nobili, C. Seis and S. Spirito, Eulerian and Lagrangian solutions to the continuity and Euler equations with L1 vorticity. SIAM J. Math. Anal. 49 (2017) 3973–3998. [CrossRef] [MathSciNet] [Google Scholar]
- F. Delarue and F. Lagoutière, Probabilistic analysis of the upwind scheme for transport equations. Arch. Ration. Mech. Anal. 199 (2011) 229–268. [Google Scholar]
- F. Delarue, F. Lagoutière and N. Vauchelet, Convergence order of upwind type schemes for transport equations with discontinuous coefficients. J. Math. Pures Appl. 108 (2017) 918–951. [CrossRef] [MathSciNet] [Google Scholar]
- F. Delarue, F. Lagoutère and N. Vauchelet, Convergence analysis of upwind type schemes for the aggregation equation with pointy potential. Ann. Henri Lebesgue 3 (2020) 217–260. [CrossRef] [MathSciNet] [Google Scholar]
- C. De Lellis, Ordinary differential equations with rough coefficients and the renormalization theorem of Ambrosio [after Ambrosio, DiPerna, Lions], in Séminaire Bourbaki – Volume 2006/2007 – Exposés 967–981. no. 317 in Astérisque. Société mathématique de France (2008). talk:972. [Google Scholar]
- R.J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98 (1989) 511–547. [Google Scholar]
- L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions, revised edition. Textbooks in Mathematics. CRC Press, Boca Raton, FL (2015). [Google Scholar]
- R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, Handbook of Numerical Analysis. Handb. Numer. Anal. VII. North-Holland, Amsterdam (2000) 713–1020. [CrossRef] [Google Scholar]
- A. Figalli, Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients. J. Funct. Anal. 254 (2008) 109–153. [CrossRef] [MathSciNet] [Google Scholar]
- N. Fournier and B. Perthame, Monge-Kantorovich distance for PDEs: the coupling method. EMS Surv. Math. Sci. 7 (2021) 1–31. [CrossRef] [Google Scholar]
- A. Friedman, Partial Differential Equations of Parabolic Type. Prentice-Hall Inc., Englewood Cliffs, NJ (1964). [Google Scholar]
- B. Heinrich, Finite Difference Methods on Irregular Networks. Birkhäuser Basel (1987). [CrossRef] [Google Scholar]
- N.N. Kuznetsov, The accuracy of certain approximate methods for the computation of weak solutions of a first order quasilinear equation. Ž. Vyčisl. Mat. i Mat. Fiz. 16 (1976) 1489–1502, 1627. [MathSciNet] [Google Scholar]
- O.A. Ladyženskaja, V.A. Solonnikov, N.N. Ural’ceva, Linear and Quasilinear Equations of Parabolic Type. Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23. American Mathematical Society, Providence, RI (1968). [Google Scholar]
- C. Le Bris and P.-L. Lions, Existence and uniqueness of solutions to Fokker-Planck type equations with irregular coefficients. Comm. Part. Differ. Equ. 33 (2008) 1272–1317. [CrossRef] [Google Scholar]
- R.J. McCann, Existence and uniqueness of monotone measure-preserving maps. Duke Math. J. 80 (1995) 309–323. [CrossRef] [MathSciNet] [Google Scholar]
- B. Merlet, L∞- and L2-error estimates for a finite volume approximation of linear advection. SIAM J. Numer. Anal. 46 (2007/2008) 124–150. [Google Scholar]
- S. Modena and G. Sattig, Convex integration solutions to the transport equation with full dimensional concentration. Ann. Inst. H. Poincaré Anal. Non Linéaire 37 (2020) 1075–1108. [CrossRef] [MathSciNet] [Google Scholar]
- S. Modena, L. Székelyhidi Jr., Non-uniqueness for the transport equation with Sobolev vector fields. Ann. PDE 4 (2018) 38. [CrossRef] [Google Scholar]
- V. Navarro-Fernández, A. Schlichting and C. Seis, Optimal stability estimates and a new uniqueness result for advection–diffusion equations. Pure Appl. Anal. 4 (2022) 571–596. [CrossRef] [MathSciNet] [Google Scholar]
- C. Ollivier-Gooch and M. Van Altena, A high-order-accurate unstructured mesh finite-volume scheme for the advection–diffusion equation. J. Comput. Phys. 181 (2002) 729–752. [Google Scholar]
- J.M. Ottino, Mixing, chaotic advection, and turbulence. Ann. Rev. Fluid Mech. 22 (1990) 207–254. [CrossRef] [Google Scholar]
- A. Pilipenko, An Introduction to Stochastic Differential Equations with Reflection. Lectures in Pure and Applied Mathematics. Universitätsverlag Potsdam (2014). [Google Scholar]
- D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, 3rd edition. Vol. 293 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin (1999). [CrossRef] [Google Scholar]
- A.A. Samarski, On monotone difference schemes for elliptic and parabolic equations in the case of a non-selfadjoint elliptic operator. Ž. Vyčisl. Mat i Mat. Fiz. 5 (1965) 548–551. [MathSciNet] [Google Scholar]
- A.A. Samarskii, R.D. Lazarov and V.L. Makarov, Difference Schemes for Differential Equations with Generalized Solutions. Vysshaya Shkola, Moscow (1987). [Google Scholar]
- A. Schlichting and C. Seis, Convergence rates for upwind schemes with rough coefficients. SIAM J. Numer. Anal. 55 (2017) 812–840. [CrossRef] [MathSciNet] [Google Scholar]
- A. Schlichting and C. Seis, Analysis of the implicit upwind finite volume scheme with rough coefficients. Numer. Math. 139 (2018) 155–186. [CrossRef] [MathSciNet] [Google Scholar]
- A. Schlichting and C. Seis, The Scharfetter-Gummel scheme for aggregation-diffusion equations. IMA J. Numer. Anal. 42 (2022) 2361–2402. [CrossRef] [MathSciNet] [Google Scholar]
- C. Seis, A quantitative theory for the continuity equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 34 (2017) 1837–1850. [CrossRef] [MathSciNet] [Google Scholar]
- C. Seis, Optimal stability estimates for continuity equations. Proc. Roy. Soc. Edinburgh Sect. A 148 (2018) 1279–1296. [CrossRef] [MathSciNet] [Google Scholar]
- B.I. Shraiman and E.D. Siggia, Scalar turbulence. Nature 405 (2000) 639–646. [CrossRef] [PubMed] [Google Scholar]
- D.W. Stroock and S.R.S. Varadhan, Diffusion processes with continuous coefficients. I. Comm. Pure Appl. Math. 22 (1969) 345–400. [Google Scholar]
- D.W. Stroock and S.R.S. Varadhan, Diffusion processes with continuous coefficients. II. Comm. Pure Appl. Math. 22 (1969) 479–530. [CrossRef] [MathSciNet] [Google Scholar]
- D.W. Stroock and S.R.S. Varadhan, Diffusion processes with boundary conditions. Comm. Pure Appl. Math. 24 (1971) 147–225. [CrossRef] [MathSciNet] [Google Scholar]
- A.N. Tikhonov and A.A. Samarski, Homogeneous difference schemes on irregular meshes. Ž. Vyčisl. Mat. Mat. Fiz. 2 (1962) 812–832. [MathSciNet] [Google Scholar]
- D. Trevisan, Well-posedness of multidimensional diffusion processes with weakly differentiable coefficients. Electron. J. Probab. 21 (2016) 41. [CrossRef] [Google Scholar]
- R. Vanselow, Relations between FEM and FVM applied to the Poisson equation. Computing 57 (1996) 93–104. [CrossRef] [MathSciNet] [Google Scholar]
- J.-P. Vila and P. Villedieu, Convergence of an explicit finite volume scheme for first order symmetric systems. Numer. Math. 94 (2003) 573–602. [CrossRef] [MathSciNet] [Google Scholar]
- C. Villani, Topics in Optimal Transportation. Vol. 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2003). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.