Open Access
Issue
ESAIM: M2AN
Volume 57, Number 4, July-August 2023
Page(s) 2097 - 2129
DOI https://doi.org/10.1051/m2an/2023048
Published online 03 July 2023
  1. C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21 (1998) 823–864. [Google Scholar]
  2. A. Bonito, J.-L. Guermond and F. Luddens, Regularity of the Maxwell equations in heterogeneous media and Lipschitz domains. J. Math. Anal. Appl. 408 (2013) 498–512. [Google Scholar]
  3. A. Bossavit, Solving Maxwell equations in a closed cavity, and the question of “spurious modes”. IEEE Trans. Magn. 26 (1990) 702–705. [CrossRef] [Google Scholar]
  4. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Vol. 15 of Texts in Applied Mathematics, 3rd edition. Springer, New York (2008). [CrossRef] [Google Scholar]
  5. A. Buffa and I. Perugia, Discontinuous Galerkin approximation of the Maxwell eigenproblem. SIAM J. Numer. Anal. 44 (2006) 2198–2226. [CrossRef] [MathSciNet] [Google Scholar]
  6. L. Camargo, B. López-Rodrguez, M. Osorio and M. Solano, An HDG method for Maxwell’s equations in heterogeneous media. Comput. Methods Appl. Mech. Eng. 368 (2020) 113178. [CrossRef] [Google Scholar]
  7. H. Chen, W. Qiu, K. Shi and M. Solano, A superconvergent HDG method for the Maxwell equations, J. Sci. Comput. 70 (2017) 1010–1029. [Google Scholar]
  8. H. Chen, W. Qiu, K. Shi, A priori and computable a posteriori error estimates for an HDG method for the coercive Maxwell equations, Comput. Methods Appl. Mech. Eng. 333 (2018) 287–310. [CrossRef] [Google Scholar]
  9. G. Chen, J. Cui and L. Xu, Analysis of a hybridizable discontinuous Galerkin method for the Maxwell operator. ESAIM Math. Model. Numer. Anal. 53 (2019) 301–324. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  10. A. Christophe, S. Descombes and S. Lanteri, An implicit hybridized discontinuous Galerkin method for the 3D time-domain Maxwell equations. Appl. Math. Comput. 319 (2018) 395–408. [MathSciNet] [Google Scholar]
  11. B. Cockburn, Z. Fu, A. Hungria, L. Ji, M.A. Sánchez and F.-J. Sayas, Stormer-Numerov HDG methods for acoustic waves. J. Sci. Comput. 75 (2018) 597–624. [CrossRef] [MathSciNet] [Google Scholar]
  12. M. Costabel and, M. Dauge, Maxwell and Lamé eigenvalues on polyhedra. Math. Methods Appl. Sci. 22 (1999) 243–258. [CrossRef] [MathSciNet] [Google Scholar]
  13. M. Costabel and M. Dauge, Weighted regularization of Maxwell equations in polyhedral domains. A rehabilitation of nodal finite elements. Numer. Math. 93 (2002) 239–277. [Google Scholar]
  14. S. Du and F.-J. Sayas, New analytical tools for HDG in elasticity, with applications to elastodynamics. Math. Comput. 89 (2020) 1745–1782. [Google Scholar]
  15. S. Du and F.-J. Sayas, A unified error analysis of hybridizable discontinuous Galerkin methods for the static Maxwell equations. SIAM J. Numer. Anal. 58 (2020) 1367–1391. [CrossRef] [MathSciNet] [Google Scholar]
  16. A. Ern and J.-L. Guermond, Analysis of the edge finite element approximation of the Maxwell equations with low regularity solutions. Comput. Math. App. 75 (2018) 918–932. [Google Scholar]
  17. C.A. Kennedy and M.H. Carpenter, Diagonally implicit Runge-Kutta methods for ordinary differential equations. a review. Technical report (2016). [Google Scholar]
  18. M. Kronbichler, S. Schoeder, C. Müller and W.A. Wall, Comparison of implicit and explicit hybridizable discontinuous Galerkin methods for the acoustic wave equation. Int. J. Numer. Methods Eng. 106 (2016) 712–739. [CrossRef] [Google Scholar]
  19. A. La Spina and J. Fish, Time- and frequency-domain hybridizable discontinuous Galerkin solvers for the calculation of the Cherenkov radiation. Comput. Methods Appl. Mech. Eng. 402 (2022) 115170. [CrossRef] [Google Scholar]
  20. C. Lehrenfeld, Hybrid discontinuous Galerkin methods for solving incompressible flow problems. Rheinisch-Westfalischen Technischen Hochschule Aachen (2010). [Google Scholar]
  21. X. Li, L. Xu, Z.-H. Yang and B. Li, A new explicit-implicit Hybridizable Discontinuous Galerkin time-domain method for electromagnetics. IEEE Microwave Wirel. Compon. Lett. 32 (2022) 1263–1266. [CrossRef] [Google Scholar]
  22. P. Lu, H. Chen and W. Qiu, An absolutely stable hp-HDG method for the time-harmonic Maxwell equations with high wave number. Math. Comput. 86 (2017) 1553–1577. [Google Scholar]
  23. C.G. Makridakis and P. Monk, Time-discrete finite element schemes for Maxwell’s equations. RAIRO Modél. Math. Anal. Numér. 29 (1995) 171–197. [MathSciNet] [Google Scholar]
  24. S. Marras, J.F. Kelly, M. Moragues, A. Müller, M.A. Kopera, M. Vázquez, F.X. Giraldo, G. Houzeaux and O.L. Jorba, A review of element-based Galerkin methods for numerical weather prediction: finite elements, spectral elements, and discontinuous Galerkin. Arch. Comput. Methods Eng. 23 (2016) 673–722. [CrossRef] [MathSciNet] [Google Scholar]
  25. P. Monk, A mixed method for approximating Maxwell’s equations. SIAM J. Numer. Anal. 28 (1991) 1610–1634. [CrossRef] [MathSciNet] [Google Scholar]
  26. P. Monk, A finite element method for approximating the time-harmonic Maxwell equations. Numer. Math. 63 (1992) 243–261. [CrossRef] [MathSciNet] [Google Scholar]
  27. J.-C. Nédélec, Mixed finite elements in R3. Numer. Math. 35 (1980) 315–341. [Google Scholar]
  28. J.-C. Nédélec, A new family of mixed finite elements in R3. Numer. Math. 50 (1986) 57–81. [CrossRef] [MathSciNet] [Google Scholar]
  29. G. Nehmetallah, S. Lanteri, S. Descombes and A. Christophe, An explicit hybridizable discontinuous Galerkin method for the 3D time-domain Maxwell equations, in Spectral and High Order Methods for Partial Differential Equations – ICOSAHOM 2018. Vol. 134 of Lect. Notes Comput. Sci. Eng. Springer, Cham (2020) 513–523. [CrossRef] [Google Scholar]
  30. N.C. Nguyen, J. Peraire and B. Cockburn, Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell’s equations. J. Comput. Phys. 230 (2011) 7151–7175. [Google Scholar]
  31. M.A. Sánchez, S. Du, B. Cockburn, N.-C. Nguyen and J. Peraire, Symplectic Hamiltonian finite element methods for electromagnetics. Comput. Methods Appl. Mech. Eng. 396 (2022) 114969. [CrossRef] [Google Scholar]
  32. F.-J. Sayas, T.S. Brown and M.E. Hassell, Variational Techniques for Elliptic Partial Differential Equation: Theoretical Tools and Advanced Applications, 1st edition. CRC Press (2019). [CrossRef] [Google Scholar]
  33. J. Schöberl, NETGEN: an advancing front 2D/3D-mesh generator based on abstract rules. Comput. Visual. Sci. 1 (1997) 41–52. [CrossRef] [Google Scholar]
  34. J. Schöberl, C++ 11 implementation of finite elements in NGSolve. Institute for Analysis and Scientific Computing, Vienna University of Technology Report No. 30/2014 (2014). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you