Open Access
Volume 57, Number 4, July-August 2023
Page(s) 2077 - 2095
Published online 03 July 2023
  1. G. Akrivis, C. Makridakis and R.H. Nochetto, Galerkin and Runge-Kutta methods: unified formulation, a posteriori error estimates and nodal superconvergence. Numer. Math. 118 (2011) 429–456. [Google Scholar]
  2. J.A. Bárcena-Petisco, M. Cavalcante, G.M. Coclite, N. de Nitti and E. Zuazua, Control of hyperbolic and parabolic equations on networks and singular limits. HAL-report 03233211 (2021). [Google Scholar]
  3. G. Chen, J.R. Singler and Y. Zhang, An HDG method for Dirichlet boundary control of convection dominated diffusion PDEs. SIAM J. Numer. Anal. 57 (2019) 1919–1946. [Google Scholar]
  4. B. Cockburn, J. Gopalakrishnan and R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47 (2009) 1319–1365. [Google Scholar]
  5. G.M. Coclite and M. Garavello, Vanishing viscosity for traffic on networks. SIAM J. Math. Anal. 42 (2010) 1761–1783. [CrossRef] [MathSciNet] [Google Scholar]
  6. P. Constantinou and C. Xenophontos, Finite element analysis of an exponentially graded mesh for singularly perturbed problems. Comput. Methods Appl. Math. 15 (2015) 135–143. [CrossRef] [MathSciNet] [Google Scholar]
  7. D.A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods. Vol. 69. Springer Science & Business Media (2011). [Google Scholar]
  8. B. Dorn, M. Kramar Fijavž, R. Nagel and A. Radl, The semigroup approach to transport processes in networks. Phys. D 239 (2010) 1416–1421. [CrossRef] [MathSciNet] [Google Scholar]
  9. R.G. Durán and A.L. Lombardi, Finite element approximation of convection diffusion problems using graded meshes. Appl. Numer. Math. 56 (2006) 1314–1325. [CrossRef] [MathSciNet] [Google Scholar]
  10. H. Egger and N. Philippi, A hybrid discontinuous Galerkin method for transport equations on networks, in Finite Volumes for Complex Applications IX, Bergen, Norway, June 2020. Vol. 323 of Springer Proc. Math. Stat. (2020) 487–495. [Google Scholar]
  11. H. Egger and N. Philippi, On the transport limit of singularly perturbed convection-diffusion problems on networks. Math. Methods Appl. Sci. 44 (2021) 5005–5020. [CrossRef] [MathSciNet] [Google Scholar]
  12. H. Egger and J. Schöberl, A hybrid mixed discontinuous Galerkin finite-element method for convection-diffusion problems. IMA J. Numer. Anal. 30 (2010) 1206–1234. [Google Scholar]
  13. G. Fu, W. Qiu and W. Zhang, An analysis of HDG methods for convection-dominated diffusion problems. ESAIM Math. Model. Numer. Anal. 49 (2015) 225–256. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  14. M. Garavello and B. Piccoli, Traffic Flow on Networks. Vol. 1 of AIMS Series on Applied Mathematics. American Institute of Mathematical Sciences (AIMS), Springfield, MO (2006). [Google Scholar]
  15. E.C. Gartland Jr., Graded-mesh difference schemes for singularly perturbed two-point boundary value problems. Math. Comput. 51 (1988) 631–657. [CrossRef] [Google Scholar]
  16. F.R. Guarguaglini and R. Natalini, Vanishing viscosity approximation for linear transport equations on finite star-shaped networks. J. Evol. Equ. 21 (2021) 2413–2447. [Google Scholar]
  17. S.-A. Hauschild, N. Marheineke, V. Mehrmann, J. Mohring, A.M. Badlyan, M. Rein and M. Schmidt, Port-Hamiltonian modeling of district heating networks, in Progress in Differential-Algebraic Equations II. Springer, Cham (2020) 333–355. [Google Scholar]
  18. V. John, Finite Element Methods for Incompressible Flow Problems. Vol. 51 of Springer Series in Computational Mathematics. Springer, Cham (2016). [CrossRef] [Google Scholar]
  19. R.B. Kellogg and A. Tsan, Analysis of some difference approximations for a singular perturbation problem without turning points. Math. Comput. 32 (1978) 1025–1039. [CrossRef] [Google Scholar]
  20. C.D. Laird, L.T. Biegler, B.G. van Bloemen Waanders and R.A. Bartlett, Contamination source determination for water networks. J. Water Res. Plan. Man. 131 (2005) 125–134. [CrossRef] [Google Scholar]
  21. D. Mugnolo, Semigroup Methods for Evolution Equations on Networks. Springer, Cham (2014). [CrossRef] [Google Scholar]
  22. N.C. Nguyen, J. Peraire and B. Cockburn, An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations. J. Comput. Phys. 230 (2011) 1147–1170. [Google Scholar]
  23. S.F. Oppenheimer, A convection-diffusion problem in a network. Appl. Math. Comput. 112 (2000) 223–240. [MathSciNet] [Google Scholar]
  24. S.C.S. Rao and V. Srivastava, Parameter-robust numerical method for time-dependent weakly coupled linear system of singularly perturbed convection-diffusion equations. Differ. Equ. Dyn. Syst. 25 (2017) 301–325. [CrossRef] [MathSciNet] [Google Scholar]
  25. H.-G. Roos and T. Linß, Sufficient conditions for uniform convergence on layer-adapted grids. Computing 63 (1999) 27–45. [CrossRef] [MathSciNet] [Google Scholar]
  26. H.-G. Roos and T. Skalický, A comparison of the finite element method on Shishkin and Gartland-type meshes for convection-diffusion problems, in International Workshop on the Numerical Solution of Thin-layer Phenomena (Amsterdam, 1997). Vol. 10 (1997) 277–300. [Google Scholar]
  27. H.-G. Roos, M. Stynes and L. Tobiska, Robust Numerical Methods for Singularly Perturbed Differential Equations. Vol. 24 of Springer Series in Computational Mathematics, 2nd edition. Springer-Verlag, Berlin (2008). [Google Scholar]
  28. H.-G. Roos, L. Teofanov and Z. Uzelac, Graded meshes for higher order FEM. J. Comput. Math. 33 (2015) 1–16. [Google Scholar]
  29. M. Schmidt, D. Aßmann, R. Burlacu, J. Humpola, I. Joormann, N. Kanelakis, T. Koch, D. Oucherif, M.E. Pfetsch, L. Schewe, R. Schwarz and M. Sirvent, GasLib – a library of gas network instances. Data 2 (2017) 40. [CrossRef] [Google Scholar]
  30. G. Singh and S. Natesan, Study of the NIPG method for two-parameter singular perturbation problems on several layer-adapted grids. J. Appl. Math. Comput. 63 (2020) 683–705. [CrossRef] [MathSciNet] [Google Scholar]
  31. M. Stynes and E. O’Riordan, Uniformly convergent difference schemes for singularly perturbed parabolic diffusion-convection problems without turning points. Numer. Math. 55 (1989) 521–544. [CrossRef] [MathSciNet] [Google Scholar]
  32. V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Vol. 25. Springer Science & Business (2007). [Google Scholar]
  33. Z. Xie and Z. Zhang, Uniform superconvergence analysis of the discontinuous Galerkin method for a singularly perturbed problem in 1-D. Math. Comp. 79 (2010) 35–45. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you