Open Access
Volume 57, Number 5, September-October 2023
Page(s) 3061 - 3090
Published online 20 October 2023
  1. M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Vol. 55. US Government Printing Office (1964). [Google Scholar]
  2. S. Andres and M.-K. von Renesse, Particle approximation of the Wasserstein diffusion. J. Funct. Anal. 258 (2010) 3879–3905. [Google Scholar]
  3. D.N. Arnold, F. Brezzi, B. Cockburn and D. Marini, Discontinuous Galerkin methods for elliptic problems, in Discontinuous Galerkin Methods. Springer, Berlin Heidelberg (2000) 89–101. [CrossRef] [Google Scholar]
  4. D.N. Arnold, R.S. Falk and R. Winther, Multigrid in H(div) and H(curl). Numer. Math. 85 (2000) 197–217. [CrossRef] [MathSciNet] [Google Scholar]
  5. L. Baňas, B. Gess and C. Vieth, Numerical approximation of singular-degenerate parabolic stochastic PDEs. Preprint arXiv:2012.12150 (2020). [Google Scholar]
  6. D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications. Vol. 44. Springer (2013). [CrossRef] [Google Scholar]
  7. J. Bourgain and H. Brezis, On the equation divY = f and application to control of phases. J. Am. Math. Soc. 16 (2003) 393–426. [Google Scholar]
  8. S.C. Brenner and L. Ridgway Scott, The Mathematical Theory of Finite Element Methods: Texts in Applied Mathematics. Springer New York (2008). [Google Scholar]
  9. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics. Springer-Verlag, New York (1991). [CrossRef] [Google Scholar]
  10. M.E. Cates and J. Tailleur, Motility-induced phase separation. Ann. Rev. Condens. Matter Phys. 6 (2015) 219–244. [CrossRef] [Google Scholar]
  11. F. Cornalba and J. Fischer, The Dean-Kawasaki equation and the structure of density fluctuations in systems of diffusing particles. Arch. Ration. Mech. Anal. 247 (2023) 76. [CrossRef] [PubMed] [Google Scholar]
  12. F. Cornalba and T. Shardlow, RIDK Computations. GitHub repository. (2022). [Google Scholar]
  13. F. Cornalba, T. Shardlow and J. Zimmer, A regularized Dean-Kawasaki model: derivation and analysis. SIAM J. Math. Anal. 51 (2019) 1137–1187. [Google Scholar]
  14. F. Cornalba, T. Shardlow and J. Zimmer, From weakly interacting particles to a regularised Dean-Kawasaki model. Nonlinearity 33 (2020) 864. [CrossRef] [MathSciNet] [Google Scholar]
  15. F. Cornalba, T. Shardlow and J. Zimmer, Well-posedness for a regularised inertial Dean-Kawasaki model for slender particles in several space dimensions. J. Differ. Equ. 284 (2021) 253–283. [Google Scholar]
  16. F. Cornalba, J. Fischer, J. Ingmanns and C. Raithel, Density fluctuations in weakly interacting particle systems via the Dean-Kawasaki equation. Preprint arXiv:2303.00429 (2023). [Google Scholar]
  17. R.F. Curtain and P.L. Falb, Ito’s lemma in infinite dimensions. J. Math. Anal. App. 31 (1970) 434–448. [Google Scholar]
  18. G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and its Applications. Vol. 44. Cambridge University Press (1992) xviii+454. [Google Scholar]
  19. D. Dean, Langevin equation for the density of a system of interacting Langevin processes. J. Phys. A 29 (1996) L613–L617. [CrossRef] [Google Scholar]
  20. H. Ding, A new particle approximation to the diffusive Dean-Kawasaki equation with colored noise. Preprint arXiv:2204.11309 (2022). [Google Scholar]
  21. N. Dirr, M. Stamatakis and J. Zimmer, Entropic and gradient flow formulations for nonlinear diffusion. J. Math. Phys. 57 (2016) 081505. [CrossRef] [MathSciNet] [Google Scholar]
  22. N. Dirr, B. Fehrman and B. Gess, Conservative stochastic PDE and fluctuations of the symmetric simple exclusion process. Preprint arXiv:2012.02126 (2020). [Google Scholar]
  23. A. Djurdjevac, H. Kremp and N. Perkowski, Weak error analysis for a nonlinear SPDE approximation of the Dean-Kawasaki equation. Preprint arXiv:2212.11714 (2022). [Google Scholar]
  24. N. Djurdjevac Conrad, J. Köppl and A. Djurdjevac, Feedback loops in opinion dynamics of agent-based models with multiplicative noise. Entropy. 24 (2022) 1352. [Google Scholar]
  25. A. Donev, E. Vanden-Eijnden, A. Garcia and J. Bell, On the accuracy of finite-volume schemes for fluctuating hydrodynamics. Comm. App. Math. Comp. Sci. 5 (2010) 149–197. [Google Scholar]
  26. M.H. Duong, M.A. Peletier and J. Zimmer, GENERIC formalism of a Vlasov–Fokker–Planck equation and connection to large-deviation principles. Nonlinearity 26 (2013) 2951. [CrossRef] [MathSciNet] [Google Scholar]
  27. M.A. Durán-Olivencia, R.S. Gvalani, S. Kalliadasis and G.A. Pavliotis, Instability, rupture and fluctuations in thin liquid films: theory and computations. J. Stat. Phys. 174 (2019) 579–604. [Google Scholar]
  28. B. Fehrman and B. Gess, Well-posedness of nonlinear diffusion equations with nonlinear, conservative noise. Arch. Ration. Mech. Anal. 233 (2019) 249–322. [Google Scholar]
  29. B. Fehrman and B. Gess, Well-posedness of the Dean-Kawasaki and the nonlinear Dawson-Watanabe equation with correlated noise. Preprint arXiv:2108.08858 (2021). [Google Scholar]
  30. B. Fehrman and B. Gess and R.S. Gvalani, Ergodicity and random dynamical systems for conservative SPDEs. Preprint arXiv:2206.14789 (2022). [Google Scholar]
  31. B. Gess, R.S. Gvalani and V. Konarovskyi, Conservative SPDEs as fluctuating mean field limits of stochastic gradient descent. Preprint arXiv:2207.05705 (2022). [Google Scholar]
  32. L. Helfmann, N.D. Conrad, A. Djurdjevac, S. Winkelmann and C. Schütte, From interacting agents to density-based modeling with stochastic PDEs. Commun. Appl. Math. Comput. Sci. 16 (2021) 1–32. [Google Scholar]
  33. K. Kawasaki, Microscopic analyses of the dynamical density functional equation of dense fluids. J. Stat. Phys. 93 (1998) 527–546. [CrossRef] [Google Scholar]
  34. C. Kim, A. Nonaka, J.B. Bell, A.L. Garcia and A. Donev, Stochastic simulation of reaction-diffusion systems: a fluctuating-hydrodynamics approach. J. Chem. Phys. 146 (2017) 124110. [Google Scholar]
  35. R.C. Kirby, A. Logg, M.E. Rognes and A.R. Terrel, Common and unusual finite elements, in Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book, edited by A. Logg, K.-A. Mardal and G. Wells. Springer Berlin Heidelberg (2012) 95–119. [CrossRef] [Google Scholar]
  36. V. Konarovskyi and M. von Renesse, Reversible coalescing-fragmentating Wasserstein dynamics on the real line. Preprint arXiv: 1709.02839 (2017). [Google Scholar]
  37. V. Konarovskyi and M.-K. von Renesse, Modified massive Arratia flow and Wasserstein diffusion. Commun. Pure Appl. Math. 72 (2019) 764–800. [Google Scholar]
  38. V. Konarovskyi, T. Lehmann and M.-K. von Renesse, Dean-Kawasaki dynamics: ill-posedness vs. triviality. Electron. Commun. Probab. 24 (2019) 1–9. [Google Scholar]
  39. V. Konarovskyi, T. Lehmann and M. von Renesse, On Dean-Kawasaki dynamics with smooth drift potential. J. Stat. Phys. 178 (2020) 666–681. [Google Scholar]
  40. X. Li, N. Dirr, P. Embacher, J. Zimmer and C. Reina, Harnessing fluctuations to discover dissipative evolution equations. J. Mech. Phys. Solids 131 (2019) 240–251. [CrossRef] [MathSciNet] [Google Scholar]
  41. Y. Li, C.-W. Shu and S. Tang, A discontinuous Galerkin method for stochastic conservation laws. SIAM J. Sci. Comput. 42 (2020) A54–A86. [Google Scholar]
  42. A. Logg, K.-A. Mardal and G. Wells, Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book. Springer Science and Business Media (2012). [CrossRef] [Google Scholar]
  43. J.F. Lutsko, A dynamical theory of nucleation for colloids and macromolecules. J. Chem. Phys. 136 (2012) 034509. [Google Scholar]
  44. C. Prévôt and M. Röckner, A Concise Course on Stochastic Partial Differential Equations. Lecture Notes in Mathematics. Vol. 1095. Springer Science & Business Media (2007). [Google Scholar]
  45. A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations. Vol. 23. Springer Science and Business Media (2008). [Google Scholar]
  46. F. Rathgeber, D.A. Ham, L. Mitchell, M. Lange, F. Luporini, A.T. McRae, G.T. Bercea, G.R. Markall and P.H. Kelly, Firedrake: Automating the Finite Element Method by Composing Abstractions. ACM Trans. Math. Softw. 43 (2016) 1–27. [Google Scholar]
  47. A. Russo, S. Perez, M. Durán-Olivencia, P. Yatsyshin, J. Carrillo and S. Kalliadasis, A finite-volume method for fluctuating dynamical density functional theory. J. Comput. Phys. 428 (2021) 109796. [Google Scholar]
  48. A. Thompson, J. Tailleur, M. Cates and R. Blythe, Lattice models of nonequilibrium bacterial dynamics. J. Stat. Mech. Theory Exp. 2011 (2011) P02029. [Google Scholar]
  49. E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer, Berlin, Heidelberg (1999). [CrossRef] [Google Scholar]
  50. M.-K. von Renesse and K.-T. Sturm, Entropic measure and Wasserstein diffusion. Ann. Probab. 37 (2009) 1114–1191. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you