Open Access
Issue
ESAIM: M2AN
Volume 57, Number 5, September-October 2023
Page(s) 3091 - 3111
DOI https://doi.org/10.1051/m2an/2023076
Published online 25 October 2023
  1. R.A. Adams and J. Fournier, Cone conditions and properties of Sobolev spaces. J. Math. Anal. Appl. 61 (1977) 713–734. [Google Scholar]
  2. R.A. Adams and J. Fournier, Sobolev spaces, 2nd edition. In Vol. 140 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam (2003). [Google Scholar]
  3. A. Ashyralyev and P.E. Sobolevskii, Well-Posedness of Parabolic Difference Equations. Birkhäuser Basel (1994). [CrossRef] [Google Scholar]
  4. S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods, 3rd edition. In Vol. 15 of Texts in Applied Mathematics. Springer, New York (2008). [Google Scholar]
  5. E. Casas, B. Vexler and E. Zuazua, Sparse initial data identification for parabolic PDE and its finite element approximations. Math. Control Relat. Fields 5 (2015) 377–399. [CrossRef] [MathSciNet] [Google Scholar]
  6. I. Drelichman, R.G. Durán and I. Ojea, A weighted setting for the numerical approximation of the poisson problem with singular sources. SIAM J. Numer. Anal. 58 (2020) 590–606. [CrossRef] [MathSciNet] [Google Scholar]
  7. K. Eriksson, C. Johnson and S. Larsson, Adaptive finite element methods for parabolic problems. VI. Analytic semigroups. SIAM J. Numer. Anal. 35 (1998) 1315–1325. [Google Scholar]
  8. L.C. Evans, Partial differential equations, 2nd edition. In no. 19 Graduate Studies in mathematics, American Mathematical Society (2010). [CrossRef] [Google Scholar]
  9. A. Hansbo, Strong stability and non-smooth data error estimates for discretizations of linear parabolic problems. BIT Numer. Math. 42 (2002) 351–379. [CrossRef] [Google Scholar]
  10. T. Hell, A. Ostermann and M. Sandbichler, Modification of dimension-splitting methods—overcoming the order reduction due to corner singularities. IMA J. Numer. Anal. 35 (2015) 1078–1091. [CrossRef] [MathSciNet] [Google Scholar]
  11. P. Lesaint and P. Raviart, On a finite element method for solving the neutron transport equation. In Mathematical Aspects of Finite Elements in Partial Differential Equations. Academic Press (1974) 89–123. [CrossRef] [Google Scholar]
  12. D. Leykekhman and B. Vexler, Pointwise best approximation results for Galerkin finite element solutions of parabolic problems. SIAM J. Numer. Anal. 54 (2016) 1365–1384. [Google Scholar]
  13. D. Leykekhman and B. Vexler, Discrete maximal parabolic regularity for Galerkin finite element methods. Numer. Math. 135 (2017) 923–952. [Google Scholar]
  14. D. Leykekhman, B. Vexler and J. Wagner, Numerical analysis of sparse initial data identification for parabolic problems with pointwise final time observations, in preparation, (2023). [Google Scholar]
  15. D. Leykekhman, B. Vexler and D. Walter, Numerical analysis of sparse initial data identification for parabolic problems. ESAIM Math. Model. Numer. Anal. 54 (2020) 1139–1180. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  16. D. Meidner, R. Rannacher and B. Vexler, A priori error estimates for finite element discretizations of parabolic optimization problems with pointwise state constraints in time. SIAM J. Control Optim. 49 (2011) 1961–1997. [Google Scholar]
  17. E.B. Saff and R.S. Varga, On the zeros and poles of Padé approximants to ez. Numer. Math. 25 (1975) 1–14. [Google Scholar]
  18. A.H. Schatz, V.C. Thomée and L.B. Wahlbin, Maximum norm stability and error estimates in parabolic finite element equations. Comm. Pure Appl. Math. 33 (1980) 265–304. [CrossRef] [MathSciNet] [Google Scholar]
  19. A.H. Schatz and L.B. Wahlbin, Interior maximum norm estimates for finite element methods. Math. Comput. 31 (1977) 414–442. [Google Scholar]
  20. V. Thomée, Galerkin finite element methods for parabolic problems, 2nd edition. In Vol. 25 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (2006). [Google Scholar]
  21. G. Wanner, E. Hairer and S.P. Nørsett, Order stars and stability theorems. BIT Numer. Math. 18 (1978) 475–489. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you