Open Access
Volume 57, Number 5, September-October 2023
Page(s) 2835 - 2863
Published online 19 September 2023
  1. A.A. Amosov and A.A. Zlotnik, On the quasi-averaging of a system of equations of the one-dimensional motion of a viscous heat-conducting gas with rapidly oscillating data. Zh. Vychisl. Mat. Mat. Fiz. 38 (1998) 1204–1219. [Google Scholar]
  2. M.R. Baer and J.W. Nunziato, A two phase mixture theory for the deflagration to detonation (DDT) transition in reactive granular materials. Int. J. Multiphase Flow 12 (1986) 861–889. [CrossRef] [Google Scholar]
  3. D. Bresch and M. Hillairet, Note on the derivation of multi-component flow systems. Proc. Amer. Math. Soc. 143 (2015) 3429–3443. [CrossRef] [MathSciNet] [Google Scholar]
  4. D. Bresch and M. Hillairet, A compressible multifluid system with new physical relaxation terms. Ann. Sci. Éc. Norm. Supér. 52 (2019) 255–295. [CrossRef] [MathSciNet] [Google Scholar]
  5. D. Bresch and X. Huang, A multi-fluid compressible system as the limit of weak solutions of the isentropic compressible Navier-Stokes equations. Arch. Ration. Mech. Anal. 201 (2011) 647–680. [CrossRef] [MathSciNet] [Google Scholar]
  6. D. Bresch, B. Desjardins, J.-M. Ghidaglia, E. Grenier and M. Hillairet, Multi-fluid models including compressible fluids, in Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. Springer, Cham (2018) 2927–2978. [CrossRef] [Google Scholar]
  7. D. Bresch, C. Burtea and F. Lagoutière, Physical relaxation terms for compressible two-phase systems. Preprint arxiv:2012.06497 (2020). [Google Scholar]
  8. D.A. Drew and S.L. Passman, Theory of Multicomponent Fluids. Vol. 135 of Applied Mathematical Sciences. Springer-Verlag, New York (1999). [CrossRef] [Google Scholar]
  9. P. Embid and M. Baer, Mathematical analysis of a two-phase continuum mixture theory. Contin. Mech. Thermodyn. 4 (1992) 279–312. [CrossRef] [MathSciNet] [Google Scholar]
  10. E. Feireisl, On the motion of rigid bodies in a viscous compressible fluid. Arch. Ration. Mech. Anal. 167 (2003) 281–308. [CrossRef] [MathSciNet] [Google Scholar]
  11. S. Gavrilyuk, The structure of pressure relaxation terms: the one-velocity case. Technical report, EDF, H-I83-2014-0276-EN (2014). [Google Scholar]
  12. M. Hillairet, Propagation of density-oscillations in solutions to the barotropic compressible Navier-Stokes system. J. Math. Fluid Mech. 9 (2007) 343–376. [CrossRef] [MathSciNet] [Google Scholar]
  13. O. Hurisse, Various choices of source terms for a class of two-fluid two-velocity models. ESAIM Math. Model. Numer. Anal. 55 (2021) 357–380. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  14. M. Ishii and T. Hibiki, Thermo-Fluid Dynamics of Two-Phase Flow. With a foreword by Lefteri H. Tsoukalas. Springer, New York (2006). [CrossRef] [Google Scholar]
  15. K. Koike, Long-time behavior of a point mass in a one-dimensional viscous compressible fluid and pointwise estimates of solutions. J. Differ. Equ. 271 (2021) 356–413. [CrossRef] [Google Scholar]
  16. L.D. Landau and E.M. Lifshitz, Fluid Mechanics. Translated from the Russian by J.B. Sykes and W.H. Reid. Course of Theoretical Physics. Vol. 6. Pergamon Press, London (1959). [Google Scholar]
  17. D. Maity, T. Takahashi and M. Tucsnak, Analysis of a system modelling the motion of a piston in a viscous gas. J. Math. Fluid Mech. 19 (2017) 551–579. [CrossRef] [MathSciNet] [Google Scholar]
  18. P. Plotnikov and J. Sokołowski, Compressible Navier–Stokes Equations: Theory and Shape Optimization. Vol. 73 of Instytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New Series) [Mathematics Institute of the Polish Academy of Sciences. Mathematical Monographs (New Series)]. Birkhäuser/Springer Basel AG, Basel (2012), Birkhäuser/Springer Basel AG, Basel (2012). [Google Scholar]
  19. J.A. San Martín, V. Starovoitov and M. Tucsnak, Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid. Arch. Ration. Mech. Anal. 161 (2002) 113–147. [Google Scholar]
  20. V.V. Šelukhin, The unique solvability of the problem of motion of a piston in a viscous gas. Dinamika Splošn. Sredy 31 (1977) 132–150, 169. [Google Scholar]
  21. D. Serre, Chute libre d’un solide dans un fluide visqueux incompressible: existence. Jpn. J. Appl. Math. 4 (1987) 99–110. [CrossRef] [Google Scholar]
  22. T. Takahashi, Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain. Adv. Differ. Equ. 8 (2003) 1499–1532. [Google Scholar]
  23. R. Temam, Problèmes mathématiques en plasticité. Vol. 12 of Méthodes Mathématiques de l’Informatique [Mathematical Methods of Information Science]. Gauthier-Villars, Montrouge (1983). [Google Scholar]
  24. D.Z. Zhang and A. Prosperetti, Ensemble phase-averaged equations for bubbly flows. Phys. Fluids 6 (1994) 956–2970. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you