Open Access
Volume 57, Number 5, September-October 2023
Page(s) 2865 - 2906
Published online 19 September 2023
  1. A.A. Amosov and A.A. Zlotnik, On the quasi-averaging of a system of equations of the one-dimensional motion of a viscous heat-conducting gas with rapidly oscillating data. Zh. Vychisl. Mat. Mat. Fiz. 38 (1998) 1204–1219. [Google Scholar]
  2. M.R. Baer and J.W. Nunziato, A two phase mixture theory for the deflagration to detonation (ddt) transition in reactive granular materials. Int. J. Multiphase Flow 12 (1986) 861–889. [CrossRef] [Google Scholar]
  3. D. Bresch and M. Hillairet, Note on the derivation of multi-component flow systems. Proc. Am. Math. Soc. 143 (2015) 3429–3443. [CrossRef] [Google Scholar]
  4. D. Bresch and M. Hillairet, A compressible multifluid system with new physical relaxation terms. Ann. Sci. Éc. Norm. Supér. 52 (2019) 255–295. [CrossRef] [MathSciNet] [Google Scholar]
  5. D. Bresch and X. Huang, A multi-fluid compressible system as the limit of weak solutions of the isentropic compressible Navier-Stokes equations. Arch. Ration. Mech. Anal. 201 (2011) 647–680. [CrossRef] [MathSciNet] [Google Scholar]
  6. D. Bresch, C. Burtea and F. Lagoutière, Physical relaxation terms for compressible two-phase systems. Preprint arxiv:2012.06497 (2020). [Google Scholar]
  7. D. Bresch, B. Desjardins, J.-M. Ghidaglia, E. Grenier and M. Hillairet, Multi-fluid models including compressible fluids, in Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, Springer, Cham (2018) 2927–2978. [CrossRef] [Google Scholar]
  8. B. Desjardins, Regularity of weak solutions of the compressible isentropic Navier-Stokes equations. Commun. Partial Differ. Equ. 22 (1997) 977–1008. [CrossRef] [Google Scholar]
  9. D.A. Drew and S.L. Passman, Theory of multicomponent fluids, in Applied Mathematical Sciences. Vol. 135. Springer-Verlag, New York (1999). [CrossRef] [Google Scholar]
  10. P. Embid and M. Baer, Mathematical analysis of a two-phase continuum mixture theory. Contin. Mech. Thermodyn. 4 (1992) 279–312. [CrossRef] [MathSciNet] [Google Scholar]
  11. E. Feireisl, A. Novotný and T. Takahashi, Homogenization and singular limits for the complete Navier–Stokes–Fourier system. J. Math. Pures Appl. 94 (2010) 33–57. [CrossRef] [MathSciNet] [Google Scholar]
  12. S. Gavrilyuk, The structure of pressure relaxation terms: the one-velocity case. Technical report, EDF, H-I83-2014-0276-EN, 2014. [Google Scholar]
  13. M. Hillairet, Propagation of density-oscillations in solutions to the barotropic compressible Navier-Stokes system. J. Math. Fluid Mech. 9 (2007) 343–376. [CrossRef] [MathSciNet] [Google Scholar]
  14. M. Hillairet, On Baer-Nunziato multiphase flow models, in Workshop on Compressible Multiphase Flows: Derivation, Closure Laws, Thermodynamics, Volume 66 of ESAIM Proc Surveys EDP Science, Les Ulis (2019) 61–83. [Google Scholar]
  15. M. Hillairet, H. Mathis and N. Seguin, Analysis of compressible bubbly flows. Part I: construction of a microscopic model, To appear in ESAIM Math. Model. Numer. Anal. [Google Scholar]
  16. D. Hoff, Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data. J. Differ. Equ. 120 (1995) 215–254. [CrossRef] [Google Scholar]
  17. M. Ishii and T. Hibiki, Thermo-fluid Dynamics of Two-phase Flow. Springer, New York (2006). [CrossRef] [Google Scholar]
  18. Y. Lu and S. Schwarzacher, Homogenization of the compressible Navier-Stokes equations in domains with very tiny holes. J. Differ. Equ. 265 (2018) 1371–1406. [CrossRef] [Google Scholar]
  19. D. Maity, T. Takahashi and M. Tucsnak, Analysis of a system modelling the motion of a piston in a viscous gas. J. Math. Fluid Mech. 19 (2017) 551–579. [CrossRef] [MathSciNet] [Google Scholar]
  20. P. Plotnikov and J. Sokolowski, Compressible Navier–Stokes equations, in Instytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New Series). [Mathematics Institute of the Polish Academy of Sciences. Mathematical Monographs (New Series)]. Vol. 73. Birkhäuser/Springer Basel AG, Basel (2012). [Google Scholar]
  21. V.V. Šeluhin, The unique solvability of the problem of motion of a piston in a viscous gas. Dinamika Splošn. Sredy 31 (1977) 132–150. [Google Scholar]
  22. D. Serre, Variations de grande amplitude pour la densité d’un fluide visqueux compressible. Phys. D 48 (1991) 113–128. [CrossRef] [MathSciNet] [Google Scholar]
  23. N. Wang and P. Smereka, Effective equations for sound and void wave propagation in bubbly fluids. SIAM J. Appl. Math. 63 (2003) 1849–1888. [CrossRef] [MathSciNet] [Google Scholar]
  24. F.A. Williams, Combustion Theory. CRC Press, Taylor and Francis Group (1985). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you