Open Access
Issue
ESAIM: M2AN
Volume 57, Number 5, September-October 2023
Page(s) 3113 - 3138
DOI https://doi.org/10.1051/m2an/2023074
Published online 25 October 2023
  1. A. Alphonse and C.M. Elliott, A Stefan problem on an evolving surface. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 373 (2015) 20140279. [CrossRef] [PubMed] [Google Scholar]
  2. A. Alphonse and C.M. Elliott, Well-posedness of a fractional porous medium equation on an evolving surface. Nonlinear Anal. 137 (2016) 3–42. [CrossRef] [MathSciNet] [Google Scholar]
  3. A. Alphonse, C.M. Elliott and B. Stinner, An abstract framework for parabolic PDEs on evolving spaces. Portugaliae Math. 72 (2015) 1–46. [CrossRef] [MathSciNet] [Google Scholar]
  4. A. Alphonse, C.M. Elliott and B. Stinner, On some linear parabolic PDEs on moving hypersurfaces. Interfaces Free Boundaries 17 (2015) 157–187. [CrossRef] [MathSciNet] [Google Scholar]
  5. A. Alphonse, C.M. Elliott and J. Terra, A coupled ligand-receptor bulk-surface system on a moving domain: well posedness, regularity, and convergence to equilibrium. SIAM J. Math. Anal. 50 (2018) 1544–1592. [CrossRef] [MathSciNet] [Google Scholar]
  6. A. Alphonse, D. Caetano, A. Djurdjevac and C.M. Elliott, Function spaces, time derivatives and compactness for evolving families of Banach spaces with applications to PDEs. J. Differ. Equ. 353 (2023) 268–338. [CrossRef] [Google Scholar]
  7. R. Barreira, C.M. Elliott and A. Madzvamuse, The surface finite element method for pattern formation on evolving biological surfaces. J. Math. Biol. 63 (2011) 1095–1119. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  8. D.N. Bock, On the Navier-Stokes equations in noncylindrical domains. J. Differ. Equ. 25 (1977) 151–162. [CrossRef] [Google Scholar]
  9. D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications. Vol. 44. Springer (2013). [CrossRef] [Google Scholar]
  10. P. Brandner, A. Reusken and P. Schwering, On derivations of evolving surface Navier-Stokes equations. Interfaces Free Boundaries 24 (2022) 533–563. [CrossRef] [MathSciNet] [Google Scholar]
  11. E. Burman, S. Frei and A. Massing, Eulerian time-stepping schemes for the non-stationary stokes equations on time-dependent domains. Numer. Math. 150 (2022) 423–478. [CrossRef] [MathSciNet] [Google Scholar]
  12. L. Church, A. Djurdjevac and C.M. Elliott, A domain mapping approach for elliptic equations posed on random bulk and surface domains. Numer. Math. 146 (2020) 1–49. [CrossRef] [MathSciNet] [Google Scholar]
  13. I. Demirdžić and M. Perić, Finite volume method for prediction of fluid flow in arbitrarily shaped domains with moving boundaries. Int. J. Numer. Methods Fluids 10 (1990) 771–790. [CrossRef] [Google Scholar]
  14. A. Djurdjevac, Linear parabolic problems in random moving domains. SIAM/ASA J. Uncertainty Quantif. 9 (2021) 848–879. [CrossRef] [MathSciNet] [Google Scholar]
  15. O.R. Dunbar, K.F. Lam and B. Stinner, Phase field modelling of surfactants in multi-phase flow. Interfaces Free Boundaries 21 (2019) 495–547. [CrossRef] [MathSciNet] [Google Scholar]
  16. G. Dziuk and C.M. Elliott, A fully discrete evolving surface finite element method. SIAM J. Numer. Anal. 50 (2012) 2677–2694. [CrossRef] [MathSciNet] [Google Scholar]
  17. G. Dziuk and C.M. Elliott, Finite element methods for surface PDEs. Acta Numerica 22 (2013) 289–396. [CrossRef] [MathSciNet] [Google Scholar]
  18. C.M. Elliott and T. Ranner, A unified theory for continuous-in-time evolving finite element space approximations to partial differential equations in evolving domains. IMA J. Numer. Anal. 41 (2020) 1696–1845. [Google Scholar]
  19. C.M. Elliott and B. Stinner, Modeling and computation of two phase geometric biomembranes using surface finite elements. J. Comput. Phys. 229 (2010) 6585–6612. [CrossRef] [MathSciNet] [Google Scholar]
  20. C.M. Elliott and B. Stinner, A surface phase field model for two-phase biological membranes. SIAM J. Appl. Math. 70 (2010) 2904–2928. [CrossRef] [MathSciNet] [Google Scholar]
  21. A. Ern and J.L. Guermond, Theory and Practice of Finite Elements. Applied Mathematical Sciences. Springer, New York (2004). [CrossRef] [Google Scholar]
  22. C.M. Fleeter, G. Geraci, D.E. Schiavazzi, A.M. Kahn and A.L. Marsden, Multilevel and multifidelity uncertainty quantification for cardiovascular hemodynamics. Comput. Methods Appl. Mech. Eng. 365 (2020) 113030. [CrossRef] [Google Scholar]
  23. H. Fujita, On existence of weak solutions of the Navier-Stokes equations in regions with moving boundaries. J. Fac. Sci. Univ. Tokyo Sect. I 17 (1970) 403–420. [Google Scholar]
  24. H. Fujita and N. Sauer, On existence of weak solutions of the Navier-Stokes equations in regions with moving boundaries. J. Fac. Sci. Univ. Tokyo Sect. I 17 (1970) 403–420. [Google Scholar]
  25. H. Garcke, K.F. Lam and B. Stinner, Diffuse interface modelling of soluble surfactants in two-phase flow. Commun. Math. Sci. 12 (2014) 1475–1522. [CrossRef] [MathSciNet] [Google Scholar]
  26. S. Gross and A. Reusken, Numerical Methods for Two-Phase Incompressible Flows. Vol. 40. Springer Science & Business Media (2011). [CrossRef] [Google Scholar]
  27. P. Hartman, Ordinary Differential Equations. Vol. 38 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002). [Google Scholar]
  28. P. Heinrich, Nonlinear water waves generated by submarine and aerial landslides. J. Waterway Port Coastal Ocean Eng. 118 (1992) 249–266. [CrossRef] [Google Scholar]
  29. A. Inoue and M. Wakimoto, On existence of solutions of the Navier-Stokes equation in a time dependent domain. J. Fac. Sci. Univ. Tokyo Sect. IA 24 (1977) 303–319. [Google Scholar]
  30. T. Jankuhn, M.A. Olshanskii and A. Reusken, Incompressible fluid problems on embedded surfaces: modeling and variational formulations. Interfaces Free Boundaries 20 (2018) 353–378. [CrossRef] [MathSciNet] [Google Scholar]
  31. H. Koba, C. Liu and Y. Giga, Energetic variational approaches for incompressible fluid systems on an evolving surface. Q. Appl. Math. 75 (2017) 359–389. [Google Scholar]
  32. J. Lee, M.E. Moghadam, E. Kung, H. Cao, T. Beebe, Y. Miller, B.L. Roman, C.-L. Lien, N.C. Chi, A.L. Marsden and T.K. Hsiai, Moving domain computational fluid dynamics to interface with an embryonic model of cardiac morphogenesis. PloS One 8 (2013) e72924. [CrossRef] [PubMed] [Google Scholar]
  33. J. Liu, W. Yang, I.S. Lan and A.L. Marsden, Fluid–structure interaction modeling of blood flow in the pulmonary arteries using the unified continuum and variational multiscale formulation. Mech. Res. Commun. 107 (2020) 103556. [CrossRef] [Google Scholar]
  34. C. Lubich, D. Mansour and C. Venkataraman, Backward difference time discretization of parabolic differential equations on evolving surfaces. IMA J. Numer. Anal. 33 (2013) 1365–1385. [CrossRef] [MathSciNet] [Google Scholar]
  35. A.J. Majda and A.L. Bertozzi, Vorticity and Incompressible Flow. Cambridge Texts in Applied Mathematics. Cambridge University Press (2001). [Google Scholar]
  36. T.-H. Miura, On singular limit equations for incompressible fluids in moving thin domains. Q. Appl. Math. 76 (2018) 215–251. [Google Scholar]
  37. T. Miyakawa and Y. Teramoto, Existence and periodicity of weak solutions of the Navier-Stokes equations in a time dependent domain. Hiroshima Math. J. 12 (1982) 513–528. [Google Scholar]
  38. S. Monniaux, Various boundary conditions for Navier-Stokes equations in bounded Lipschitz domains. Discrete Continuous Dyn. Syst. – S 6 (2013) 1355. [CrossRef] [Google Scholar]
  39. M. Moubachir and J.-P. Zolesio, Moving Shape Analysis and Control: Applications to Fluid Structure Interactions. CRC Press (2006). [CrossRef] [Google Scholar]
  40. M.A. Olshanskii, A. Quaini, A. Reusken and V. Yushutin, A finite element method for the surface Stokes problem. SIAM J. Sci. Comput. 40 (2018) A2492–A2518. [CrossRef] [Google Scholar]
  41. M.A. Olshanskii, A. Reusken and A. Zhiliakov, Tangential Navier-Stokes equations on evolving surfaces: analysis and simulations. Math. Models Methods Appl. Sci. 32 (2022) 2817–2852. [Google Scholar]
  42. A. Quarteroni, L. Dede’, A. Manzoni and C. Vergara, Mathematical Modelling of the Human Cardiovascular System: Data, Numerical Approximation, Clinical Applications. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press (2019). [Google Scholar]
  43. A. Reusken, Stream function formulation of surface Stokes equations. IMA J. Numer. Anal. 40 (2020) 109–139. [CrossRef] [MathSciNet] [Google Scholar]
  44. S. Reuther and A. Voigt, Solving the incompressible surface Navier-Stokes equation by surface finite elements. Phys. Fluids 30 (2018) 012107. [CrossRef] [Google Scholar]
  45. M.E. Rognes, R.C. Kirby and A. Logg, Efficient assembly of H(div) and H(curl) conforming finite elements. SIAM J. Sci. Comput. 31 (2010) 4130–4151. [CrossRef] [Google Scholar]
  46. J. Saal, Maximal regularity for the Stokes system on noncylindrical space-time domains. J. Math. Soc. Jpn. 58 (2006) 617–641. [CrossRef] [Google Scholar]
  47. J. Saal, Strong solutions for the Navier-Stokes equations on bounded and unbounded domains with a moving boundary, in Proceedings of the Sixth Mississippi State – UBA Conference on Differential Equations and Computational Simulations (San Marcos, TX). Electron. J. Differ. Equ. Conf. Vol. 15. Citeseer (2007) 365–375. [Google Scholar]
  48. R. Salvi, On the Navier-Stokes equations in non-cylindrical domains: on the existence and regularity. Math. Z. 199 (1988) 153–170. [CrossRef] [MathSciNet] [Google Scholar]
  49. W. Shyy, H. Udaykumar and M.M. Rao, Computational Fluid Dynamics with Moving Boundaries. CRC Press (1995). [Google Scholar]
  50. G.I. Taylor, VIII. Stability of a viscous liquid contained between two rotating cylinders. Philos. Trans. R. Soc. London Ser. A Containing Pap. Math. Phys. Charact. 223 (1923) 289–343. [Google Scholar]
  51. R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis. Society for Industrial and Applied Mathematics (1995). [Google Scholar]
  52. T.E. Tezduyar, Finite element methods for fluid dynamics with moving boundaries and interfaces. Encycl. Comput. Mech. 3 (2004) 545–578. [Google Scholar]
  53. J.S. Tran, D.E. Schiavazzi, A.M. Kahn and A.L. Marsden, Uncertainty quantification of simulated biomechanical stimuli in coronary artery bypass grafts. Comput. Methods Appl. Mech. Eng. 345 (2019) 402–428. [CrossRef] [Google Scholar]
  54. C. Venkataraman, T. Sekimura, E.A. Gaffney, P.K. Maini and A. Madzvamuse, Modeling parr-mark pattern formation during the early development of Amago Trout. Phys. Rev. E 84 (2011) 041923. [CrossRef] [PubMed] [Google Scholar]
  55. M. Vierling, Parabolic optimal control problems on evolving surfaces subject to point-wise box constraints on the control–theory and numerical realization. Interfaces Free Boundaries 16 (2014) 137–173. [CrossRef] [MathSciNet] [Google Scholar]
  56. H. von Wahl, T. Richter and C. Lehrenfeld, An unfitted Eulerian finite element method for the time-dependent Stokes problem on moving domains. IMA J. Numer. Anal. 42 (2021) 2505–2544. [Google Scholar]
  57. I. Voulis and A. Reusken, A time dependent Stokes interface problem: well-posedness and space-time finite element discretization. ESAIM: Math. Model. Numer. Anal. 52 (2018) 2187–2213. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you