Open Access
Issue
ESAIM: M2AN
Volume 57, Number 5, September-October 2023
Page(s) 3139 - 3164
DOI https://doi.org/10.1051/m2an/2023069
Published online 27 October 2023
  1. D. Adak, G. Manzini and S. Natarajan, Virtual element approximation of two-dimensional parabolic variational inequalities. Comput. Math. Appl. 116 (2022) 48–70. [CrossRef] [MathSciNet] [Google Scholar]
  2. B. Ahmad, A. Alsaedi, F. Brezzi, L.D. Marini and A. Russo, Equivalent projectors for virtual element methods. Comput. Math. Appl. 66 (2013) 376–391. [Google Scholar]
  3. D. Amigo, F. Lepe and G. Rivera, A virtual element method for the elasticity problem allowing small edges. Calcolo 60 (2023) 34. [CrossRef] [Google Scholar]
  4. P.F. Antonietti, L. Beirão da Veiga, D. Mora and M. Verani, A stream virtual element formulation of the Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 52 (2014) 386–404. [Google Scholar]
  5. P.F. Antonietti, L. Beirão da Veiga, S. Scacchi and M. Verani, A C1 virtual element method for the Cahn-Hilliard equation with polygonal meshes. SIAM J. Numer. Anal. 54 (2016) 34–56. [Google Scholar]
  6. P.F. Antonietti, L. Beirão da Veiga and G. Manzini, The Virtual Element Method and its Applications. SEMA SIMAI Springer Series. Vol. 31. Springer Nature (2022). [CrossRef] [Google Scholar]
  7. E. Artioli, S. de Miranda, C. Lovadina and L. Patruno, A family of virtual element methods for plane elasticity problems based on the Hellinger-Reissner principle. Comput. Methods Appl. Mech. Eng. 340 (2018) 978–999. [Google Scholar]
  8. I. Babuška and J. Osborn, Eigenvalue Problems. Handb. Numer. Anal., II. North-Holland, Amsterdam (1991). [Google Scholar]
  9. L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L.D. Marini and A. Russo, Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013) 199–214. [Google Scholar]
  10. L. Beirão da Veiga, F. Brezzi and L.D. Marini, Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51 (2013) 794–812. [Google Scholar]
  11. L. Beirão da Veiga, F. Brezzi, L.D. Marini and A. Russo, Virtual element method for general second-order elliptic problems on polygonal meshes. Math. Models Methods Appl. Sci. 26 (2016) 729–750. [Google Scholar]
  12. L. Beirão da Veiga, C. Lovadina and A. Russo, Stability analysis for the virtual element method. Math. Models Methods Appl. Sci. 27 (2017) 2557–2594. [Google Scholar]
  13. L. Beirão da Veiga, F. Brezzi, F. Dassi, L.D. Marini and A. Russo, Virtual element approximation of 2D magnetostatic problems. Comput. Methods Appl. Mech. Eng. 327 (2017) 173–195. [Google Scholar]
  14. D. Boffi, Finite element approximation of eigenvalue problems. Acta Numer. 19 (2010) 1–120. [Google Scholar]
  15. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer, New York (2008). [Google Scholar]
  16. S.C. Brenner and L.Y. Sung, Virtual element methods on meshes with small edges or faces. Math. Models Methods Appl. Sci. 28 (2018) 1291–1336. [Google Scholar]
  17. E. Cáceres and G.N. Gatica, A mixed virtual element method for the pseudostress-velocity formulation of the Stokes problem. IMA J. Numer. Anal. 37 (2017) 296–331. [Google Scholar]
  18. A. Cangiani, E.H. Georgoulis, T. Pryer and O.J. Sutton, A posteriori error estimates for the virtual element method. Numer. Math. 137 (2017) 857–893. [Google Scholar]
  19. C. Carstensen, J. Gedicke, V. Mehrmann and A. Miedlar, An adaptive homotopy approach for non-selfadjoint eigenvalue problems. Numer. Math. 119 (2011) 557–583. [CrossRef] [MathSciNet] [Google Scholar]
  20. J. Droniou and L. Yemm, Robust hybrid high-order method on polytopal meshes with small faces. Comput. Methods Appl. Math. 22 (2022) 47–71. [CrossRef] [MathSciNet] [Google Scholar]
  21. M. Frittelli and I. Sgura, Virtual element method for the Laplace-Beltrami equation on surfaces. ESAIM Math. Model. Numer. Anal. 52 (2018) 965–993. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  22. F. Gardini and G. Vacca, Virtual element method for second-order elliptic eigenvalue problems. IMA J. Numer. Anal. 38 (2018) 2026–2054. [CrossRef] [MathSciNet] [Google Scholar]
  23. F. Gardini, G. Manzini and G. Vacca, The nonconforming virtual element method for eigenvalue problems. ESAIM Math. Model. Numer. Anal. 53 (2019) 749–774. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  24. J. Gedicke and C. Carstensen, A posteriori error estimators for convection–diffusion eigenvalue problems. Comput. Methods Appl. Mech. Eng. 268 (2014) 160–177. [CrossRef] [Google Scholar]
  25. V. Girault and P.A. Raviart, Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Vol. 5 of Springer Series in Computational Mathematics. , Springer-Verlag, Berlin (1986). [CrossRef] [Google Scholar]
  26. T. Kato, Perturbation Theory for Linear Operators. Die Grundlehren der mathematischen Wissenschaften. Band 132. Springer-Verlag New York, Inc, New York (1966). [Google Scholar]
  27. F. Lepe and G. Rivera, A priori error analysis for a mixed VEM discretization of the spectral problem for the Laplacian operator. Calcolo 58 (2021) 30. [CrossRef] [PubMed] [Google Scholar]
  28. F. Lepe and G. Rivera, A virtual element approximation for the pseudostress formulation of the Stokes eigenvalue problem. Comput. Methods Appl. Mech. Eng. 379 (2021) 21. [Google Scholar]
  29. F. Lepe, D. Mora, G. Rivera and I. Velásquez, A virtual element method for the Steklov eigenvalue problem allowing small edges. J. Sci. Comput. 88 (2021) 21. [CrossRef] [Google Scholar]
  30. D. Mora, G. Rivera and R. Rodríguez, A virtual element method for the Steklov eigenvalue problem. Math. Models Methods Appl. Sci. 25 (2015) 1421–1445. [Google Scholar]
  31. A. Naga and Z. Zhang, Function value recovery and its application in eigenvalue problems. SIAM J. Numer. Anal. 50 (2012) 272–286. [CrossRef] [MathSciNet] [Google Scholar]
  32. J. Tushar, A. Kumar and S. Kumar, Virtual element methods for general linear elliptic interface problems on polygonal meshes with small edges. Comput. Math. Appl. 122 (2022) 61–75. [CrossRef] [MathSciNet] [Google Scholar]
  33. P. Wriggers, W.T. Rust and B.D. Reddy, A virtual element method for contact. Comput. Mech. 58 (2016) 1039–1050. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you